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Abstract

This work demonstrates the extension of the purely algebraic XQuery compiler Pathfinder
with an infrastructure for implicit score propagation. This is used to implement a subset of
XQuery Full Text, employing the PF/Tijah index for Full Text search.

It is shown that a flexible framework for implicit score propagation can be implemented easily
—i.e., minimally invasive— on top of the Pathfinder compiler. The described prototype imple-
mentation can be parametrised with different scoring model functions, and should be adaptable
to alternative database back-ends and Full Text engines.

At the same time, various systematic problems that arise from implicit score propagation are
pointed out, rising the question whether such an approach is useful in general. Flaws in the
design of the XQuery language are described that thwart more flexible extensions at the user
level.

German: Diese Arbeit demonstriert die Erweiterung des rein algebraischen XQuery Überset-
zers Pathfinder um eine Infrastruktur für die implizite Weiterleitung von Bewertungen (score
propagation). Diese wird verwendet um, unter Verwendung des PF/Tijah Indexes für die
Volltext-Suche, eine Teilmenge von XQuery Full Text, zu implementieren.

Es wird gezeigt, dass ein flexibles Rahmenwerk für die implizite score propagation, minimal-inva-
siv auf dem Pathfinder Übersetzer aufbauend, implementiert werden kann. Die hier beschrie-
bene Implementation eines Prototyps kann mit Funktionen unterschiedlicher Bewertungsmodelle
parametrisiert werden, und sollte an unterschiedliche Datenbank- und Volltext-Backends anpass-
bar sein.

Gleichzeitig werden diverse prinzipielle Probleme herausgearbeitet, die sich bei impliziter score
propagation stellen. Damit wird auch die Frage gestellt, ob solch ein Ansatz überhaupt sinnvoll
ist. Schwächen im Design der XQuery Sprache, die flexiblere Erweiterungen auf Benutzerebene
vereiteln, werden beschrieben.
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Chapter 1

Motivation and Overview

1.1 Extrinsic Motivation

Clearly, XML is en vogue, be it as data exchange format on the web, so called “human readable”
configuration files, or programming languages (think XSLT), or, actually, markup in documents.
No matter what use case, someone will come up with an XML-ified version of it. Thus, naturally,
the amount of XML data grew (and is still growing) to an amout making the need for XML
databases obvious. Not surprisingly, XML is particularly well suited to encode documents (i.e.,
semi structured data) since this domain is where its ancestor SGML originates from. And due
to its hierarchical structure, a single XML tree naturally hosts collections of documents, and
libraries of collections of documents...

With library-scale document collections, stored in a databases, comes the need for information
retrieval (IR), i.e., queries no longer follow the traditional database style “give me those things
x from database Y with exactly the property p!”, but rather a more vague scheme: “What book
is about z?”, or even just “z”.

But not only the kind of asking changed. An XML database may (depending on the query)
decide at which granularity (see [18]) the query is answered. Due to the hierarchical concept
(potentially storing a complete library below a single root node) there is no need to focus on
tuples, or documents, as the retrieval unit. Without request by the user, there is not even
justification for doing so. Hence, among the set of “important” items returned, one may find
letters, chapters, paragraphs, or even drawings (think SVG).

Several challanges arise from this vison: Store large XML instances, allow for access at node-
granularity, and, by adding IR, determine what is relevant, and at which granularity (is a book
relevant just because it contains a relevant paragraph?). But also, and tightly coupled with
these: Find means to express a query. In other words, a language is necessary that allows the
expression of such queries.

For a plain (i.e., non-IR) setting, XQuery seems to have established as a de facto standard.
It allows for precise navigation in the tree structure of an XML instance, iteration over node
sequences, predicates, conditionals, etc., thus answering the language question for two of the
above challanges. Furthermore, there are mature implementations of XML databases featuring
XQuery as a query language. The Pathfinder/MonetDB couple is the one this thesis builds
on.
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For the IR setting, things are more in motion. NEXI is one of the more well-known approaches
to find a Full Text query language. One implementation of a NEXI system is of special interest
for this thesis. The authors of [13] manage to couple their Full Text index (named Tijah)
with the Pathfinder/MonetDB system mentioned above: An important step to do, since the
expressiveness of NEXI is quite limited.

The PF/Tijah system embeds NEXI queries as plain strings in XQuery queries, and uses special
builtin functions to run the Tijah engine on these queries, which return scores, or sequences
of nodes ordered by relevance. The missing gap in the PF/Tijah system is that the NEXI
strings appear as a black box to the compiler. The problem is that XQuery provides no means
to express a Full Text query. In other words, there is means to evaluate vague queries in an
XQuery setting, but no language to sanely express them.

XQuery Full Text is an extension to the XQuery language that aims to solve exactly this
problem: It extends the XQuery language with a full-blown IR language.

1.2 Intrinsic Motivation

When I started looking for a PhD topic, the combination of XQuery and Full Text was still in
its infancy, and there was virtually no XQuery Full Text engine available. Except, of course,
GalaTex [7], which came along with the XQuery Full Text draft, not to say that the
XQuery Full Text draft looks like the documentation of what was done building GalaTex.

With emerging XQuery Full Text and a connection to the Pathfinder people (Torsten Grust
mentored my diploma thesis, and it was him who started research (see [9]) on what later led to
the Pathfinder project at Marc H. Scholl’s chair in Konstanz, who, in turn, hosts me as a PhD
student currently), it seemed a reasonable project to find out how the high-performance XQuery
compiler could be extended to digest XQuery Full Text. Naturally, the environment and my
own perspective led to a more DB-ish understanding of the XQuery Full Text language, as
opposed to what IR folks might expect. See Section 2.1 for a discussion of the tension between
IR and DB semantics of a query language.

Long before starting to think about Full Text, during a stay at Universiteit Twente in 2005,
I learned to know Vojkan Mihajlović, Djoerd Hiemstra, and others, working on information
retrieval over XML documents using the NEXI language.

Figure 1 on page 11 tries to depict the various ways of how their work inspired the development
of Pathfinder

FT
, although only the most influential events are shown. Chapter 3 gives a more

thorough overview of related work.

Clearly, the beginning was contact with Pathfinder [9, 10, 11], and an understanding of how it
manages to perform XQuery on RDBMSs. The Score Region Algebra introduced by [17] gave
an impulse to offer implicit score propagation via abstract functions. After some development,
the integration of Pathfinder and Tijah in the PF/Tijah project [14] gave rise to the idea of
using the Tijah index as a scoring engine for XQuery Full Text.

At the time where the early Pathfinder
FT

looked like a reasonable approach, it became obvious
that the original Pathfinder compiler had developed quite a lot from the point I had used as
foundation for my work. Also, since I never anticipated to rebuild the complete Pathfinder
compiler, but only the most basic core suitable to host the intended extensions instead, my
implementation suffered several shortcomings. In other words: The prototype implemented until
then was far from able to actually “run on” the desired back-end. A lot of discussion with the
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target algebra. This
also allowed to call
the Tijah index from
the generated plans.

Figure 1: A rough representation of history. The horizontal, shaded bars represent the different
projects. Green arrows indicate landmarks in the development that heavily influenced and inspired the

development of Pathfinder
FT

.

Pathfinder group helped in adapting PathfinderFT to the “real world” Pathfinder to a
reasonable extent. Also, a great deal of communication with the PF/Tijah group finally allowed

me to use their index as scoring back-end for PathfinderFT.

Although PathfinderFT still lacks a lot of XQuery, and XQuery Full Text functionality,
it is now a reasonably complete, and runnable proof of concept.

* * *

The remainder of this thesis is organised as follows: Chapter 2 gives an overview of what
XQuery Full Text actually is, and what challenges arise from extending XQuery with Full
Text in an orthogonal way. This also shines a light on the tension between IR and DB languages,
criticising the perception of scores and second-order semantics promoted by the XQuery Full
Text designers. The need for implicit propagation is pointed out. Also, some design choices
made in the development of XQuery, and their rather ugly consequences for XQuery Full
Text are shown. Chapter 3 outlines related work, before Chapter 4 gives a more deep
description of the Pathfinder compiler, and the desired extensions. The overall architecture
of the PathfinderFT compiler is explained here. Finally, Chapter 5 formally describes the
compilation rules used by the PathfinderFT compiler to compile XQuery Full Text to
Relational Algebra. The focus is on explaining the extensions made in comparison to the original
Pathfinder compiler. This chapter also points out some of the pitfalls earned from implicit
score propagation. Chapter 6 allows some insights into how the Pathfinder

FT
prototype was

actually implemented.





Chapter 2

Introduction to XQuery Full Text

2.1 What is XQuery Full Text?

What is XQuery Full Text? Is it a DB or an IR query language? The question boils down
to decide what the semantics of an XQuery Full Text query actually is.

In the DB world, a query has semantics formally defined by some more or less simple rules, with
a strictly defined set of operators, and their behaviour (the algebra). Together with a bunch
of laws that hold for the algebra and that can be exploited for query optimisation. Databases
contain structured data, be it relations in the case of an RDBMS, or trees in the case of an XML
database.

The IR community takes a more vague approach, some even deny the existence of query semantics
that can be derived by a simple parser, or reflected by an ordinary abstract syntax-tree (AST).
Put provokingly, guessing and satisfying the user’s information need is more important to the
IR community, than providing means for algebraically correct transformations of a query plan.

The following quote from the makers of the NEXI language (see [24]), describing the difference
between XPath and NEXI, makes the tension between a DB and an IR perception of a query
language quite clear:

The most significant diversion from XPath is semantics. Whereas in XPath the
semantics are defined, in NEXI the retrieval engine must deduce the semantics from
the query. This is the information retrieval problem – and to do otherwise is to make
it a database language. For clarity, strict and loose interpretations of the syntax are
included herein, however these should not be considered the only interpretations of
the language.

The perspective of this thesis is to understand XQuery Full Text as an orthogonal extension
of XQuery with a Full Text sub-language as described in Section 4.1. I.e., the XQuery portion
of the language retains its strict DB semantics, and the Full Text portion can have arbitrarily
vague semantics. In fact, the evaluation of the Full Text expressions is not part of this thesis.
Instead, different compilation techniques are described to let an IR system do its job on the
Full Text expressions, and to hand its findings back to the DB system formed by the Pathfin-
der/MonetDB couple.
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This separation of semantic domains is also described in Section 2.3.1.3: While the structure of
the Full Text portion of a query may be relevant to its outcome, the structure of the XQuery
portion remains impervious to the Full Text engine.

2.2 Syntax

2.2.1 The horizontal language stack

XQuery Full Text is an extension of XQuery with Full Text features. This paragraph
presents a notion of XQuery as an interleaving of multiple sub-languages with different focuses.
This is referred to as the horizontal language stack in this thesis, as opposed to the vertical
language stack discussed in Section 4.1. Then I will present how XQuery Full Text can be
understood as an extension of XQuery with a Full Text language.

2.2.1.1 XQuery

What is the gist of XQuery? If we leave out path expressions and node construction, the
remaining thing is a language to work with sequences of items of sorts, binding them to variables,
iterating over, filtering, sorting them, offering flow control and function definitions. There is not
much else one can do. But after all, XQuery is not XQuery without path expressions and node
construction. These are discussed in the following.

2.2.1.2 XML

XML not only is the language used to describe the documents in our database, it can also be used
to construct XML fragments in the XQuery language. To allow for an interleaving of XQuery
and XML expressions though, the root of the XML grammar does not appear as a terminal symbol
in the XQuery grammar. Instead, the XQuery grammar introduces a DirectConstructor1 to
construct XML nodes.

DirectConstructor ::= DirElemConstructor | . . .
DirElemConstructor ::= ”<” QName DirAttributeList

(”/>” | (”>” DirElemContent∗ ”</” QName S? ”>”))

The syntax of such constructions is deliberately based on XML syntax, with one mayor difference:
These “XML” expressions may contain an EnclosedExpr2 to construct CommonContent3, which
can be seen as an “escaping” construct to close the circle back to XQuery.

EnclosedExpr ::= ”{” Expr ”}”
CommonContent ::= . . . | EnclosedExpr

The result of a node construction is an item in the XQuery data model.

1http://www.w3.org/TR/xquery/#prod-xquery-DirectConstructor
2http://www.w3.org/TR/xquery/#prod-xquery-EnclosedExpr
3http://www.w3.org/TR/xquery/#doc-xquery-CommonContent

http://www.w3.org/TR/xquery/#prod-xquery-DirectConstructor
http://www.w3.org/TR/xquery/#prod-xquery-EnclosedExpr
http://www.w3.org/TR/xquery/#doc-xquery-CommonContent
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2.2.1.3 XPath

XPath is a language to navigate within XML documents4, or more precisely, to address arbitrary
parts of an XML document. As with XML above, XQuery does not directly use XPath as a
terminal symbol in its grammar. Instead, the production of PathExpr5 introduces axis steps as
known from XPath, and the production for Predicate6 leads back to XQuery expressions. A
path expression can be seen as a function mapping an XQuery item sequence containing the
context nodes to an item sequence containing the result nodes.

* * *

As said, the XQuery grammar does not include the XPath or XML grammars. It is rather
constructed deliberately so that the user has the impression to embed plain XML/XPath code
into XQuery, and to embed XQuery into those embedded XML/XPath expressions.

for $b

in doc("library.xml")//book

return <book>

{ $b/title }

<authors>{ $b/author }</authors>

</book>

In this example “XPath” is used for addressing book, title, and author nodes, “XML” is used
for construction of result tuples, and XQuery is used for the looping and for gluing together
the other expressions.

2.2.1.4 Adding Full Text

Now XQuery Full Text, as an extension of XQuery, can be seen as the addition of another
sub-language (referred to as the Full Text language in this thesis), and means to interleave Full
Text with XQuery.

In the grammar, the production FTContainsExpr7 introduces the Full Text language on its right
hand side, through the non-terminal symbol FTSelection8. This expression specifies the condi-
tions of a full-text search9 within a search context specified by the RangeExpr10 on left hand side
of the contains text keyword.

FTContainsExpr ::= RangeExpr ( ”contains” ”text” FTSelection FTIgnoreOption?)?
FTSelection ::= [production of the Full Text language]

RangeExpr ::= [this is plain XQuery]

FTIgnoreOptions are currently not handled by PathfinderFT, but would add another parameter
to be passed to the Full Text engine, which is expressed in XQuery.

4http://www.w3.org/TR/xpath/>
5http://www.w3.org/TR/xquery/#prod-xquery-PathExpr
6http://www.w3.org/TR/xquery/#prod-xquery-Predicate
7http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#prod-xquery10-FTContainsExpr
8http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#prod-xquery10-FTSelection
9http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#ftselection

10http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#prod-xquery10-RangeExpr

http://www.w3.org/TR/xpath/>
http://www.w3.org/TR/xquery/#prod-xquery-PathExpr
http://www.w3.org/TR/xquery/#prod-xquery-Predicate
http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#prod-xquery10-FTContainsExpr
http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#prod-xquery10-FTSelection
http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#ftselection
http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#prod-xquery10-RangeExpr
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The primary search terms can be expressed as literals, or as XQuery expressions, which is
implemented by the production FTWordsValue11, thereby embedding XQuery in the Full Text
language.

FTSelection ::= [via some productions, uses FTWordsValue]
FTWordsValue ::= Literal | (”{” Expr ”}”)

This is not the only opportunity where this embedding takes place, e.g., following the weight

keyword an integer value is expected, which is also expressed by means of XQuery.

The Full Text language offers various ways to further specify the role of a primary search term
in a search. Aspects of its compilation are shown in Section 5.22. The exact semantics and
evaluation of the (compiled) Full Text expressions is not part of this thesis, but instead depends
on the Full Text engine used.

* * *

The proposed partitioning of the XQuery language in the above paragraphs is not purely arti-
ficial. Chapter 4 will show more clearly that the different sub-languages correspond to different,
although related, compilation strategies and, finally, to different concepts in the back-end.

Within the scope of this thesis, i.e., with respect to the Pathfinder compiler, the following
relations exist:

• XML corresponds to document storage and twigs used by the Pathfinder compiler to
efficiently handle node construction.

• XPath corresponds to the XPath accelerator [9].

• XQuery corresponds to loop-lifted relational item representation.

• Full Text corresponds to PF/Tijah, i.e., the proposed approach expects all Full Text
expressions to be evaluated by a Full Text machine that is available to the database back-
end.

2.2.2 How Full Text interacts with XQuery

In contrast to XML or XPath sub-expressions, there are two points in the syntax, rather than
one, where the Full Text language interacts with the query.

One, of course, is the place where the Full Text expression is embedded, i.e., the predicate in
the following query.

$doc/book[./author contains text "John"]

However, and this makes the extension offered by XQuery Full Text special, the Full Text
expression does not simply return a Boolean, it also “returns” a score that remains hidden at
first. Only the use of the score keyword reveals the score and binds it to a variable, say $s,
which identifies the second syntactic location of interaction between XQuery and Full Text.

let score $s := $doc/book[./author contains text "John"] return $s

11http://www.w3.org/TR/2008/CR-xpath-full-text-10-20080516/#prod-xquery-FTWordsValue

http://www.w3.org/TR/2008/CR-xpath-full-text-10-20080516/#prod-xquery-FTWordsValue
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These two extensions to the XQuery syntax are connected only semantically, not on the syntax
level, i.e., not explicitly by a form visible to the user. The following paragraphs elaborate on
this.

2.2.2.1 Invoking the Full Text machinery

The operator contains text introduces a Full Text query language as its second argument,
which —applied on contains text’s first argument, a plain XQuery expression12 determining
the search context— yields a Boolean together with a score.

$lib/book[./title contains text "Hitchhiker" ftand "Guide"]

The Full Text language on the right hand side introduces special Full Text operators, such as,
e.g., ftand, ftor, ftweight, ftallWords, etc., which do not coincide with XQuery operators of
similar name. More on the distinction between XQuery and the Full Text language is explained
in Section 2.2.2.3.

From the user’s perspective, scores come into existence only by using the contains text keyword
in an XQuery Full Text query. However, they are not accessible by means of the XQuery
language itself, because “the Value” returned is a Boolean. The score lurks behind the syntax.

Using only XQuery syntax to operate on the findings of the Full Text machinery will not make
any use of the score, i.e., the query above will return those books from the library, whose title is
considered by the Full Text machinery to fulfil the requirement "Hitchhiker" ftand "Guide".

However, the Full Text machinery also creates scores that describe “how well” the Full Text
requirements are fulfilled by the queried element — although other interpretations of the score
are very well possible, see Section 2.3.3. The XQuery Full Text specification [1] restricts this
score to a floating point value in the range [0, 1], but other values are thinkable — PF/Tijah
actually does use scores outside this range. This score is attached to the Boolean returned by the
contains text operator. This coupling is so tight, that the Pathfinder

FT
compiler actually

takes the scored Booleans as pairs of a Boolean and a score.

There is a clear distinction between these pairs, and XQuery’s item sequences such as (true(),
0.3): The former are proper pairs of an XQuery Boolean (later relaxed to XQuery singleton
items), and a score defined independent of XQuery’s data model, i.e., XQuery provides no
means to instantiate such pairs. The latter resemble lists, XQuery’s major data structure, where
the list with exactly one element is indistinguishable from the element alone (modulo type), and
that hence cannot be nested.

From XQuery’s point of view, the scored Boolean is nothing but a Boolean, and consequently,
XQuery provides no means to access the scores. This gives rise to the second syntactic exten-
sion:

12Of course, due to orthogonality, XQuery Full Text expressions would be allowed as well to determine the
search context. This further complicates matters, and is discussed later.
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2.2.2.2 Getting the scores

The second syntactic extension to the XQuery language can be found in the for and let-
clauses. Both are extended with a keyword score to make the hidden score available to the
XQuery language by binding it to an XQuery variable. This allows for the construction of
XQuery expressions that depend on the score calculated by the Full Text machinery.

for $i score $s

in $lib/book[./title contains text "Hitchhiker" ftand "Guide"]

where $s > 0.7

order by $s descending

return $i

In this example, the predicate [./title contains text ...] filters books depending on the
Boolean value returned by the Full Text machinery. The for-clause iterates over those books
that qualify against the predicate, thereby binding variable $i to the respective element node,
and variable $s to the score that was returned by contains text together with the Boolean
that made the book qualify.

Another example is the let-clause, as in the following query:

let $i score $s

:= $lib/book[./title contains text "Hitchhiker" ftand "Guide"]

return $s

Here, the variable $s is bound to a single combined score that reflects the scores of all books
that qualify. Note that $i is bound to an item sequence that potentially contains more than
one item, namely all the books for which the Full Text machinery returned true. However, the
XQuery Full Text specification [1] requires the score variable $s to be bound to a singleton
score. Clearly, this requires some way to combine the scores calculated for different qualifying
books into a singleton value.

Besides, the XQuery Full Text definition does not allow the binding of a score variable $s and
a sequence variable $i in the same let-clause, as is done in the above example. Pathfinder

FT

adds this feature without further effort.

2.2.2.3 Interleaving XQuery and Full Text expressions

Although the contains text operator introduces a Full Text language that is syntactically and
semantically distinct from the XQuery language, it does allow the use of values calculated by
means provided by the XQuery language. The simplest is the use of string literals as in

. contains text "Hitchhiker"

but all other XQuery expressions of suitable type could be used instead:

for $i score $s

in $lib/book[./author contains text $person/surname]

return ($i,$s)

Although the XQuery specification [3] is a bit more tight about this, the compilation scheme
described in this thesis allows for arbitrary nesting of XQuery Full Text expressions.

As a simple example, the expression
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("foo","bar","qux") contains text "foo"

is a completely acceptable XQuery Full Text query to the PathfinderFT compiler, although
the Full Text index employed by the current back-end will choke on estimating the score of
something not in a document.

Claiming such orthogonality directly triggers one question: What is the score of 42? More
specifically, what happens if the user demands a score that was never calculated:

for $i score $s in 42 return $s

PathfinderFT compensates for this issue by expecting to know a default score. This could be
a neutral element, an invalid score (the XQuery Full Text specification [1] would allow for
−1 here), or a marker denoting “unscored” (e.g., null if the database back-end supports this).
When binding this default score to a score variable by using the score keyword, it needs to be
mapped to something in the XQuery domain, so null might be somewhat difficult to use here.

2.2.2.4 Score propagation

The alert reader probably stumbled over the following peculiarity in the above examples: A
query like

for $i score $s

in $lib/book[./title contains text "Hitchhiker" ftand "Guide"]

return ($i,$s)

uses an iteration over books generated by a path expression, thereby binding the score variable $s
to scores that come from a syntactically different source. A more terse example is the following:

for $i score $s in $list[. contains text $e] return ($i,$s)

Note that $i iterates over the items drawn from the item sequence $list, while $s iterates over
the scores created inside the predicate expression. So there are two different lists of values (items
in $list and scores returned by contains text), originating at different locations, that are
zipped together to form value/score pairs, and it is not clear by which means this should happen.

Here, zipping (aka. convolution) refers to a canonical, and order-invariant, mapping from a
pair of lists of the same length, to a list of pairs. An implementing function is often called
zip, an instructive equation is the following:

zip([1, 2, 3], [a, b, c]) ≡ [(1, a), (2, b), (3, c)]

One might think of a zip fastener, which employs a similar principle. The more general case
maps n lists to a list of n-tuples, or even to a list of results of applying an nary function on
each of the tuples.

This zipping threatens the orthogonality of the XQuery Full Text language as described in
Section 2.2.2.3: The syntactically different sources correspond to different sub-expressions in the
abstract expression tree, each of which could be replaced by a different, much more complex one.

There may be different sources for scores in one predicate
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for $i score $s

in $list[ (./foo contains text "Hitchhiker")

and (./bar contains text "Guide")

]

return ($i,$s)

or Full Text predicates may be applied to different steps of a path expression

for $i score $s

in $list[. contains text "Hitchhiker"]/foo[. contains text "Guide"]

return ($i,$s)

both raising the question about how to deal with all the scores that are created by the different
calls to the Full Text machinery.

The PathfinderFT compiler employs a translation scheme that uniformly deals with all such
cases.

2.3 What is a score?

2.3.1 The “second-order aspect”

The XQuery Full Text specification [1] claims13 that it would be impossible to create a
function that returns the score attached to the Boolean returned from the Full Text machinery:

The use of score variables introduces a second-order aspect to the evaluation of ex-
pressions which cannot be emulated by (first-order) XQuery functions. Consider the
following replacement of the clause let score $s := FTContainsExpr

let $s := score(FTContainsExpr)

where a function score is applied on some FTContainsExpr. If the function score
were first-order, it would only be applied on the result of the evaluation of its argument,
which is one of the Boolean constants true or false. Hence, there would be at most
two possible values such a score function would be able to return and no further
differentiation would be possible.

This justification is bogus for two reasons: First of all, if the above argumentation were valid,
it would be impossible to use the score keyword within a function. Easily, one could declare a
score() function otherwise:

declare function score($arg as item()*) as xs:float {

let score $s := $arg return $s

}

Here the “second-order aspect” carries over to the declared function, which is forbidden by the
above argumentation. Disallowing the use of any scoring inside function definitions however, is
a restriction I consider too rigorous.

13http://www.w3.org/TR/2009/CR-xpath-full-text-10-20090709/#doc-xquery-LetClause

http://www.w3.org/TR/2009/CR-xpath-full-text-10-20090709/#doc-xquery-LetClause
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Second, XQuery lacks referential transparency anyway14, so it is not much good as rationale
in the above argument. The reason for this is that XQuery’s node constructors do have side
effects: Each constructed node has a unique identity, i.e., the appearance of <a/> in an XQuery
expression denotes neither constant nor function. The following query nicely demonstrates this.

declare function local:f($xs as element()*) as element() {

<a>{ $xs }</a>

};

let $q := <b/>

return ( if ($q is $q)

then "$q is $q"

else "$q is not $q"

, if (local:f($q) is local:f($q))

then "f($q) is f($q)"

else "f($q) is not f($q)"

)

Running this query evaluates to

("$q is $q", "f($q) is not f($q)")

In contrast to node identity (tested with the is operator), equality is too weak to recognise the
different identities of nodes: Value comparison operator eq and general comparison operator
= both atomise their arguments before performing the actual comparison (see Section 5.17 for
general comparison), hence, node identities do not play a role in this case anyway. The following
query returns true.

<a>hello<b/>world</a> eq "helloworld"

2.3.1.1 Why node identity?

A rationale for node identity certainly is XPath semantics: An axis-step always maps a set of
context-nodes to a duplicate-free sequence of nodes in document-order. It is important to note
that duplicates are determined by identity, not by equivalence.

let $doc := <doc>

<x> – the first intermediate node
<x> – and the second one

<target/>

</x>

<target/>

</x>

</doc>

return $doc//x//target

In the above query, the intermediate axis step //x finds both x-nodes, forming the sequence
(x1, x2). From this context set, the final step //target finds both target-nodes from x1, and
additionally finds the second target-node again from x2. The duplicate occurrence of the second

14http://www.w3.org/TR/2007/REC-xquery-20070123/#id-basics

http://www.w3.org/TR/2007/REC-xquery-20070123/#id-basics
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target-node is dropped from the result sequence (A smart implementation combines these steps,
see [10]).

Comparing by equivalence instead would make it impossible to reliably count the number of
occurrences of a tag, as in

fn:count($doc//target)

which would always return 1.

Not removing duplicates would lead to the same problem in the opposite direction, pretending
the existence of more nodes than actually exist.

2.3.1.2 Semantics of query structure

Another justification for the “second-order aspect” claimed15 in the XQuery Full Text spec-
ification is the assumed relevance of the structure of a query to the result:

There are numerous scoring algorithms used in practice. Most of the scoring algo-
rithms take as inputs a query and a set of results to the query. In computing the
score, these algorithms rely on the structure of the query to estimate the relevance of
the results.

In the context of defining the semantics of XQuery and XPath Full Text, passing
the structure of the query poses a problem. The query may contain XQuery 1.0 and
XPath 2.0 expressions and XQuery and XPath Full Text expressions in particular.
The semantics of XQuery 1.0 and XPath 2.0 expressions is defined using (among
other things) functions that take as arguments sequences of items and return sequences
of items. They are not aware of what expression produced a particular sequence, i.e.,
they are not aware of the expression structure.

To define the semantics of scoring in XQuery and XPath Full Text using XQuery
1.0, expressions that produce the query result (or the functions that implement the
expressions) must be passed as arguments. In other words, second-order functions are
necessary. Currently XQuery 1.0 and XPath 2.0 do not provide such functions.

I disagree with the conclusion made in the third paragraph: Having access to the structure of
the query neither implies second-order functionality, nor the other way round:

First, to gain access to the query structure, it is enough to have access to the parse tree. From
this, the “hard semantics”, can be derived by forming an abstract syntax tree. But also the query
structure is available therein, i.e., the interpretation of the parse tree is not limited to construct
an AST just by not having higher-order functionality in the implementing language. Having
access to the parse tree by language means, however, does not imply higher-order functionality:
A language does not necessarily provide means to evaluate data, like, e.g., the eval functions
available in Python16, or Perl17.

Second, consider a higher-order function, such as Haskell’s map function. As its type

map :: (α→ β)→ [α]→ [β]

15http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#ScoreSec
16http://docs.python.org/library/functions.html#eval
17http://perldoc.perl.org/functions/eval.html

http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#ScoreSec
http://docs.python.org/library/functions.html#eval
http://perldoc.perl.org/functions/eval.html
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shows, it transforms a unary function f :: α → β to a unary function working on lists of type
[α]→ [β], by applying the function f to each member of the input list:

map f [1,2,3] ≡ [f 1, f 2, f 3]

Although map is a higher-order function, there are no means it could possibly detect the structure
of its argument function f . E.g., if f ≡ sqrt, it would be impossible for map to find out by which
means the root is calculated.

2.3.1.3 Missing the “second-order aspect”

It is important to realise where PathfinderFT makes the query structure accessible to the
executing engine: Section 5.22 describes, among others, compilation techniques that make Full
Text expressions completely accessible to a Full Text engine. But it is an intrinsic feature of the
PathfinderFT architecture that the XQuery portion of a query is isolated from interpretation
by the Full Text engine.

In the IR community it is common sense that the syntax used by the user to denote the query
contains information about the users information need, which is not expressed by an abstract
syntax tree, see the quote in Section 2.1.

Allowing a more IR-style interpretation of the Full Text language may lead to diverging semantics
for the following two queries. An algebraic style semantics of the (commutative) and operator in

doc("library")/books[ ./abstract contains text "magic"

and ./abstract contains text "technology"

]

clearly allows to interchange the two search term literals without changing the semantics of the
query, and doing otherwise is potentially breaking the compiler’s optimisation strategies.

On the other hand, a Full Text system might want to give more weight to the term "magic"

than to the term "technology" in the query

doc("library")/books[./abstract contains text "magic"

ftand "technology"

]

simply because “there must be a reason why” the user entered "magic" first.

The former query contains the Boolean XQuery operator and combining two Full Text ex-
pressions, while the latter contains one Full Text expression employing the Boolean Full Text
operator ftand to combine two Full Text terms.

Pathfinder
FT

is able to pass various representations of a Full Text expression to the Full Text
engine, thereby allowing for IR-style semantics of operators such as ftand. On the other hand, it
resorts to a DB-style perception of semantics for the XQuery portion of the language, allowing
for the interchange of both keywords in the first example without changing its semantics.

2.3.2 Where are the scores?

The approach taken by PathfinderFT allows the definition of a function that returns the score
of its argument, while not further violating the remains of XQuery’s tendency to referential
transparency:
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Pathfinder
FT

takes each and every XQuery Full Text item as a proper pair18 of a native
XQuery value and a score (which would be a float in most cases). The available XQuery
operations only “see” the XQuery value while the score remains hidden, i.e., its existence is
orthogonal to the XQuery items. Section 2.4 gives a more thorough discussion about why such
a design is required.

With this perception, it is perfectly sound to allow a function score that maps a scored item to
its score, by projection on the second component.

So what about equality? For cases where

a = b⇒ f a = f b

holds in XQuery, we would like it to hold in XQuery Full Text as well. So there are three
possible approaches:

1. Redefine equality to obey the scores.

2. Strip all scores when calling a function, or set them to a fixed default value.

3. Ignore scores for comparison, only compare the value.

Pathfinder
FT

currently implements the last option, i.e., the Query19

("foo" scored 0.3) eq ("foo" scored 0.7)

evaluates to true, although the scores of the two string values differ.

Thus, equality is too weak to recognise different scores, just as explained above for node identity.
This analogy is the reason why I consider the approach taken to fit best: XQuery’s equality
already had a weak spot before. Equality of scores of two values x and y can still be tested with

let score $a := x
, score $b := y

return $a = $b

The other two solutions do not fit as well: If equality would obey scores, i.e., if the above query
evaluated to false, it would be more difficult for a user to use correctly: For some query result
$q containing the string "foo" with a score different from the default score, the comparison20

$q = "foo" would nevertheless evaluate to false, giving the impression that "foo" was not part

of the result. PathfinderFT returns true instead.

Stripping all scores from the items before passing them to a function would guarantee referential
transparency as far as XQuery does, simply because functions could observe variations only in
the value-component of the passed item, not in the score component. But this would also thwart
the efforts taken in the XQuery Full Text design to implicitly pass around scores on, e.g.,
XPath axis steps. One would have to draw a line between functions that require stripping, and
other operators that do not employ stripping. Not only is this distinction subject to whim, it
would merely reduce the discussed problem to the smaller class of those operators, not solve it
completely.

18in a mathematical sense, i.e., not an XQuery sequence of two items
19introducing the non-standard keyword scored, which explicitly sets the score of all items in the sequence on

its left hand side to the value given to the right, see Section 5.9.
20using XQuery’s existential semantics (see

http://www.w3.org/TR/2007/REC-xquery-20070123/#id-general-comparisons)

http://www.w3.org/TR/2007/REC-xquery-20070123/#id-general-comparisons
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2.3.3 Semantics of scores

Recall one of the earlier examples:

for $i score $s

in $lib/book[./title contains text "Hitchhiker" ftand "Guide"]

where $s > 0.7

order by $s descending

return $i

If the score reflects, as the XQuery Full Text specification demands, how well the Full Text
expression is satisfied, then one has to find a threshold for returning true. If a book does not
qualify, the Full Text machinery could return false with an arbitrary score, or true with a very
low score. The exact behaviour is a design choice to be made by the implementers.

This however raises the question whether a pair of a Boolean and a score is required at all. If,
e.g., a threshold of t implied for Boolean b with score s that b ≡ s > t, then the score would
carry all information, i.e., the Boolean would be redundant.

Also, one could argue that the Full Text machinery should never return false: If the query asked
for ascending ordering instead, one would expect the least significant books first. If they are
filtered out just because contains text returned false, the list would begin somewhere in the
middle, dropping relevant (due to irrelevance) results.

One could as well (deviating from the XQuery Full Text specification) argue that the score
indicates how confident the Full Text machinery is about its Boolean decision. In that case high
scores would make sense with a false return value.

The PathfinderFT architecture does not impose any semantics whatsoever on the scores, i.e.,
it is fit to comply with any of the above interpretations. However, the scoring model functions
provided in Chapter 5 share one common perspective: The involved scores shall not interfere
with the calculations of values, unless explicitly requested by the user using one of the keywords
score, or scored. More formally, that situation is described as follows: To calculate an item
〈v|s〉 by application of a function f on some arguments

〈v|s〉 ≡ f 〈v1|s1〉 . . . 〈vn|sn〉

there should be a function f ′ so that

∀s1, . . . , sn. v ≡ f ′v1 . . . vn

holds. The obvious exception being uses of score, or scored in f .

This is a notable restriction: Consider the simple set difference expressed by the following query.

let $list := doc("library.xml")/books

for $b in $list[./author contains text "Wells"]

except

$list[./text contains text "gay"]

return $b/title

This may not return “The Time Machine”21 for a simple reason: The text contains the word
"gay", and if the Full Text engine adds it to the second node sequence, even with a tiny score

21H. G. Wells, 1895. http://www.gutenberg.org/etext/35

http://www.gutenberg.org/etext/35
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only, than it will be removed from the first sequence by the except operation, even though it
may have assigned a high score from the first test.

In this situation, it may be desirable to merely reduce the score of an item, instead of removing it,
and the Pathfinder

FT
architecture allows doing so. On the other hand, such an interpretation

of scores is very much similar to fuzzy logic and fuzzy set theory (see [20]), where membership of
an element in a set is defined by a characteristic function ∈̃ :: Universe→ FuzzySet→ [0, 1]R. Now
an item sequence with attached scores may be considered a fuzzy set. However, the membership
test x∈̃S returns a number (the score) instead of a Boolean with a score attached. Again, the
question is what role the Boolean plays.

2.4 Neither Tuple, nor Record, nor Class

This whole thesis is about extending the Pathfinder compiler with an infrastructure for im-
plicitly handling scores, attached by a scoring engine to the native XQuery values.

But why are scores attached to values at all? Because this is the only means to implement
implicit score propagation in, or better: on top of XQuery. The reason for this being the fact
that the XQuery design assumes XML to be more than enough to describe any record type
necessary, which, to some extent, is not totally wrong. The remainder of this “what-if” section
provides some suggestions why more than flat item sequences and XML might have been helpful
in the extension of XQuery with a scoring infrastructure.

2.4.1 Tuples

An interface to the scoring engine typically wants to return not only a Boolean value, or a node,
but also a score or a match position (a pointer into the target document), i.e., a tuple of at least
two values. XQuery, however, does not provide means to do so: A sequence of item/score pairs
is flattened automatically, becoming a sequence of alternating scores and values with an even
number of members, which is much more difficult to handle since one cannot map a function
over it.

[14] uses the workaround described on page 31 to get hold of the result nodes and the associated
scores.

Of course a scoring engine could as well pack each of its result value/score pairs 〈v|s〉 in an XML
snippet:

<mns:item xmlns:mns="a namespace reserved for this purpose">
<mns:value>v</mns:value>
<mns:score>s</mns:score>

</mns:item>

This, however, would require the (rather expensive, consider the copy-semantics for node con-
struction) creation of lots of new XML snippets, and it would require the programmer to add
rather ugly boilerplate unpacking code to finally access the scores and the values. Additionally,
an optimising compiler would be left with the task to remove this packing/unpacking code where
the scores are not actually used.
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2.4.2 Overloading with Typeclasses

Another means to implement implicit score propagation could be achieved with ad-hoc polymor-
phism22 along the lines of the Haskell programming language [23]. Assume a class Steps that
forms the family of all functions used to perform XPath axis steps:

class Steps α where

child :: [α] -> [α]
descendant :: ...

and similar classes for numeric and Boolean operations. Any value can then be extended with a
score of appropriate type σ by wrapping it with a data constructor as, e.g., the following.

data Scored α
= Scored σ α

With this construction, and by defining how scores should propagate on axis steps, we can easily
declare that everything in the Steps class is still in the Steps class when annotated with a score:

instance Steps α => Steps (Scored α) where

child = aggregateScores . groupByNodes . map onestep

where

-- for each context node, pair result nodes with context scores

onestep :: Scored α -> (σ, [α])
onestep (Scored s x) = (s, child [x])

-- group scores by result nodes

groupByNodes :: [(σ, [α])] -> [(α,[σ])]
groupByNodes = ...

-- for each result node, aggregate scores of respective context nodes

aggregateScores :: [(α,[s])] -> [Scored α]
aggregateScores = ...

descendant = ...

And similar for all other types for which implicit score propagation is desired, e.g., assuming a
class Boolean:

instance Boolean α => Boolean (Scored α) where

(Scored s1 x1) & (Scored s2 x2) = Scored (min s1 s2) (x1 & x2)

...

2.4.3 Overloading with Records or Objects

Object oriented languages like, e.g., Java or C++, provide means to extend a class through
inheritance, some even allow for overloading of operators. In such a scenario it is an option to
extend, e.g., the class for XML nodes, to accommodate an additional score. By overloading the
operations that work on the base data types, implicit score propagation could be implemented.

The suggestive example query uses fictional dot-notation to access the members of a record, or
the fields of an object:

22http://www.haskell.org/haskellwiki/Ad-hoc_polymorphism

http://www.haskell.org/haskellwiki/Ad-hoc_polymorphism
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for $item in $list[. contains text "foo"]/child::author

order by $item.score

return $item.value/child::surname

An overloaded step operator is used here: The first use fetches author nodes, and propagates
scores, the second use fetches surnames and is applied on “pure” values. This notation makes it
explicit that no score propagation should be applied for the latter step.

* * *

The benefits of a design that integrates scores by the means naturally available in the program-
ming language should be obvious: Each of the suggested approaches gives more freedom to the
programmer, the user, and the library interface designer. The hypothetically available compilers
and interpreters could be used without extension.

The XQuery Full Text architecture makes it impossible to add different score types and
propagation algorithms by means of the language itself. The PathfinderFT architecture is at
least flexible enough to allow a database administrator to add such extensions by tweaking the
compilation rules as described in this thesis. But a scoring infrastructure defined by means of the
query language itself would offer this flexibility to the database users, i.e., the XQuery Full
Text users.

With the design alternatives in sight, the implicit score propagation suggested by the XQuery
Full Text draft merely looks like a hack: It had to be added to the language kernel in an
inaccessible, and obscure way (i.e., out of the programmers control) because the original language,
XQuery, was never built to act as a friendly host for such extensions.



Chapter 3

Related Work

Relational Algebra is used by [5] to present a formal model for Full Text search. The involved
full-text relations contain a variable list of attributes, one to represent a context node, and
further to represent positions where the query matches. In this setting, each tuple in the relation
contains exactly one context node, and a list of positions.

The model proposed in [5] is designed to capture Full Text semantics with positions of tokens,
and to embed them in a relational setting. The authors also associate a score with the tuples in
the full-text relations, and they present score transformations for their algebra operators. I.e.,
they define for each Relational Algebra operator how scores implicitly present in each tuple of a
relation shall be mapped to the scores in the result relation.

E.g., for the projection πcnode,score,pos1,...,poskR, the scores of all input tuples t1, ..., tn in R that
are projected to the same output tuple t shall be combined. In the tf.idf case, the formula

t.score = Σ{ti.score|1 ≤ i ≤ n}

is proposed. In the setting of my thesis, an aggregation would be required to perform such a
computation because the Relational Algebra used here does not provide means for the implicit
calculation of attached scores.

This is a major difference to the Pathfinder
FT

architecture: While [5] handles score propagation

implicitly for each algebra operator, PathfinderFT handles scores explicitly at the algebra level.
I.e., the implicit score propagation of XQuery Full Text is made explicit by PathfinderFT’s
compilation steps.

The benefit of making score calculations explicit is that rewriting the algebra plan becomes
easier: Again for the tf.idf case, [5] suggests the following score transformations for negation,
union and difference:

¬〈a|s〉 = 〈¬a|1− s〉
〈a|s〉 and 〈b|t〉 = 〈a and b|min s t〉
〈a|s〉 or 〈b|t〉 = 〈a or b|s+ t〉

Which is clearly not compatible with rewritings à la, e.g., DeMorgan.

This is not due to the model proposed by [5], but rather due to the (unsound, [14]) score
combining functions chosen for the algebra operators. The drawback implicit score propagation
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at the algebra level does introduce, is that it prevents the optimiser from rewriting the Relational
Algebra plan without potentially changing the scores.

In contrast to [5], my thesis does not introduce an algebra to model Full Text queries, nor does
it map Full Text languages to Relational Algebra, nor extend Relational Algebra with implicit
score propagation. Instead, an existing [16] use of pretty much traditional Relational Algebra,
to implement XQuery evaluation (i.e., flat item sequences, nested iterations) on relational
database back-ends [4], is extended with a scoring infrastructure to serve as an XQuery Full
Text back-end. To this end, the fixed-width relations with schema iter|pos|item, used by the
Pathfinder compiler to model item sequences and iterations, are extended explicitly with one
column named score carrying the score attached to an item. This score column is never handled
implicitly by any algebra operator, instead, it is a first-class citizen among all other attributes
of a relation.

Thus, the score propagation implicit in an XQuery Full Text expression like

e1 or e2

is made explicit in the corresponding Relational Algebra1 expression

@pos:1 / πiter
item
score

/ opscore:
score1+score2︸ ︷︷ ︸

calculate score

/ opitem:
item1∨item2︸ ︷︷ ︸

calculate value

(πiter
item1:item
score1:score

q
e1

y
on πiter

item2:item
score2:score

q
e2

y
)

using the sum operator for combining scores in an or expression.

By making the score computation explicit at the algebra level, PathfinderFT facilitates opti-
misations: XQuery Full Text’s implicit score propagation is mapped to explicit Relational
Algebra operations, i.e., on a semantic level the Relational Algebra optimiser cannot distinguish
query results from scores, and handles them just the same way: as first-class citizens of the
tuples. Thus, a rewrite of the Relational Algebra plan is guaranteed to return the same scores
as an unoptimised plan.

Of course, this does not magically solve the problem of rewriting a query if the score propagation
for Boolean operators happens to be defined as above, but it allows the optimiser to rewrite the
plan, e.g., by separating the computation of scores from the computation of a Boolean expression,
and to optimise them independently. Comparison of an unoptimised plan as in Figure 7 on
page 90 with the optimised version in Figure 6 on page 88 shows this nicely. If, however, the
score propagation remains implicit at the algebra level, correctness of plan rewrites depends on
the score propagation used.

The pitfalls introduced by not well-behaved score propagation persist, but have now shifted to
query-rewriting instead of plan-rewriting. It is still required to take special care at the point
where score computation is made explicit, and the user may still experience strange results when
he does not fully understand the effects of rewriting a query to a seemingly equivalent one.

Throughout this work I will point out situations, where the concrete implementation of score
propagation influences query rewrites.

Whereas XQuery Full Text is introduced by [1] as an extension of XQuery with Full Text
semantics, my thesis emphasises the separation of the Information Retrieval world from the
Database world: Pathfinder

FT
isolates the potentially sloppy semantics of a Full Text expres-

sion on the right hand side of the contains text operator from the strict semantics of the

1The notation is explained in Section 5.1.
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remaining XQuery expressions. This is why the Pathfinder compiler can be used to evaluate
the XQuery portion of XQuery Full Text expressions, while the Full Text expressions must
be evaluated by a separate scoring engine. Following [1], the device of communication with the
scoring engine is to provide it with a search context and a Full Text search specification, and to
receive a scored Boolean from it. But diverging from [1], this is strictly the only means provided

by PathfinderFT. In particular, there is no “second-order” semantics (in the sense of [1], see
Section 2.3.1) involved, i.e., the scoring engine will not see the XQuery part of the query it
answers. It may, however, have full access to the Full Text part of the query, and exploit its
structure in a very IR-ish way to determine the user’s information need.

The fact that PathfinderFT makes no further assumptions about the scoring engine used should
make it versatile in that the Full Text back-end could be replaced with a different engine as the
user requires. The current prototype implementation of Pathfinder

FT
uses PF/Tijah [14] as

its scoring engine.

This was an obvious choice: [14] (and in more detail [18]) already describe an integration of Full
Text search in the Pathfinder/MonetDB system. In contrast to my thesis, their work focuses
on bringing together the Tijah index [15] and the Pathfinder compiler, without making the
step from XQuery to XQuery Full Text. While [14] does exploit Pathfinder’s potential
as a high performance XQuery database engine, they do not handle XQuery Full Text’s
implicit score propagation. Instead, PF/Tijah provides an XQuery interface to the Tijah index
by adding several functions at the XQuery level, and requires the user to explicitly handle the
scores in his XQuery query:

let $context := doc("docname.xml")

, $query := "//tag[about(.//annot, john doe)]"

, $result := tijah-query-id($context, $query)

for $node at $rank in tijah-nodes($result)

return <item rank="{ $rank }" score="{ tijah-score($result, $node) }">{

$node

}</item>

The function tijah-query-id($context, $query) would like to return, ordered by relevance,
pairs of nodes and scores. Unfortunately, this is not possible since XQuery does not know about
pairs. To work around this fundamental design flaw in the XQuery specification (see also Sec-
tion 2.4), a handle $result is returned, which may be used by function tijah-nodes($result)

to retrieve the sorted list of result nodes, and, together with a node, by the function
tijah-score($result, $node) to retrieve the respective score.

The XQuery Full Text operator contains text basically suffers the same disease, trying
to return pairs of Booleans and scores. As [14] points out, in [1], Section 4.42, a construction
similar to the one above is suggested. Simply adopting such a construction, however, undermines
the concept of implicit score propagation as described in this thesis. Section 2.4 presents some
insights about where the XQuery language design gets in the way of adding elegant score
propagation means.

The Score Region Algebra, introduced by [17], lies at the heart of the Tijah system. The basic
idea is to take the XML document as a set of nested regions, determined by their start and end
tags. Then a query on the document can be implemented using set and containment operations
on these regions, forming the Region Algebra. [17] annotates the regions with scores, and extends

2http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#ScoreSec

http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#ScoreSec
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the operations in the algebra to implicitly handle scores, yielding the Score Region Algebra. In
their work, three aspects of XML IR are recognised, namely

• element relevance score computation, the calculation of a score for an element with respect
to one single search term,

• element score combination, the combination of per term scores for an element to form a
combined score (think of Boolean queries as in about(., foo bar)), and

• element score propagation, used to propagate a score from the scored elements to the result.

The relation to this work is as follows: Element relevance score computation, and element score
combination are concepts expressed in the Full Text part of the XQuery Full Text language.
Consider

doc("lib.xml")//book[./title contains text "Wallace" ftand "Gromit"]

The Full Text engine will have to estimate the relevance of a title according to the terms
"Wallace", and "Gromit". If it is capable to evaluate the conjunction, it may immediately
combine the scores to a single one, named score combination by [17]. Then, the resulting book

nodes need to receive the scores from their titles, which is called score propagation. (But what
do we need if a book hosts multiple titles? Is it score combination, or rather propagation?)

Consider an only slightly different query3 now:

doc("lib.xml")//book[ ./title contains text "Wallace"

and ./title contains text "Gromit"

]

In PathfinderFT parlance, this is where score propagation enters the predicate: The two
contains text operators create two Booleans, whose scores have to be combined. It is impor-
tant to distinguish this operation from score combination, since it happens outside the domain
of the Full Text language (see Section 2.2.1 for a more precise explanation). The main point to

note here is that PathfinderFT propagates scores not only from elements to other elements,
but from operands to results, as, e.g., from the arguments of and to its result, but also from a
set of context nodes to the result set of an axis step. So, to answer the above question about
multiple titles: In Pathfinder

FT
, scores may indeed propagate from several elements to one

single element. This more generic approach leads to the fact that PathfinderFT does not have
a separate notion of score combination: It either performs score propagation, or calls a Full Text
engine, which does score computation.

The idea of abstract functions that implement a certain scoring model in the Score Region Alge-
bra is reused by PathfinderFT. [17] describes various scoring models, and how corresponding
implementations can be achieved by parameterising the Score Region Algebra with concrete
definitions of these functions. A similar approach is taken in this work, by defining a set of func-
tions, and interfaces that need to be specified in order to define the concrete score propagation.
Section 5.23 summarises the interface that needs to be implemented by a scoring model.

3By the way: If the Full Text engine is only capable to estimate according to a single keyword per search

context, Pathfinder
FT

allows to unfold the former query to the following, see Section 5.22.4. The question
whether and why the user might expect the same result is also discussed there.
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The BaseX project (see [8]) is also located at the DBIS group in Konstanz. In contrast to this
work, BaseX focuses on building an XML database from scratch. Recently, XQuery Full
Text was added to the BaseX feature set. Although its storage layer is inspired by a relational
encoding quite similar to the one employed by the Pathfinder compiler (see Section 4.2.2), its
evaluation engine does not employ relational algebra at all. Thus, although some of my concerns
against implicit score propagation certainly do hold for BaseX as well, the technical means of
adding a scoring infrastructure to the Pathfinder compiler are not applicable to the BaseX
architecture.

This is due to the fact that BaseX maintains XQuery items and item sequences, which are not
in the document storage, in a native way, i.e., as Java objects in main memory. All manipulations
of item sequences that may occur during query evaluation is done by classes tailored to this end.
In contrast, the Pathfinder compiler aims at creating Relational Algebra plans that can be
evaluated on a wide variety of RDBMSs, and the PathfinderFT project tries to extend this
compiler. Thus, this work describes how the Relational Algebra code created by the Pathfin-
der compiler should be modified, instead of elaborating on what should happen with the scores
exactly.

Of course, the general idea of attaching scores to items, and to take scores from arguments of
operators and calculating a new score to be attached to the operator’s result, should match any
implementation of XQuery Full Text, because that is just what the implicit score propagation
is required to do. This thesis is about how to accomplish a suitable scoring infrastructure in the
Pathfinder setting.

One major advantage of the Pathfinder
FT

approach in comparison with BaseX, and maybe any
native XQuery Full Text engine, is the ability to easily strip scores and score computations
from the compiled plan where they are dispensable. In fact, this optimisation comes for free in
the setting of this thesis, by means of a Relational Algebra optimisation phase named dead code
elimination, which is already present in the Pathfinder compiler.





Chapter 4

The Compiler

4.1 Intermediate Languages

The compilation of XQuery Full Text into Relational Algebra is performed in a number of
steps via several intermediate languages. This is referred to as the vertical language stack, in
contrast to the horizontal language stack as discussed in Section 2.2.1.

4.1.1 XQuery Full Text and XQuery Core

The XQuery Full Text input is first parsed into an abstract syntax-tree (AST) that captures
the syntactic structure of the source code.

The AST is then transformed into simplified XQuery Core, where some of the XQuery con-
structs have been replaced by more primitive XQuery constructs with equivalent semantics.
Predicates, e.g., can be translated into explicit for-loops. The XQuery expression

doc("foo.xml")/book[./author = "joe"]/title

featuring a Boolean predicate, can be replaced (adding a fresh variable dot) by

for dot
in doc("foo.xml")/book

return if dot/author = "joe"

then dot/title
else ()

The XQuery Core structure employed by the Pathfinder
FT

compiler does not necessarily
coincide with the XQuery Core language used W3C recommendation1.

1http://www.w3.org/TR/xquery-semantics/#sec_core

http://www.w3.org/TR/xquery-semantics/#sec_core
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4.1.2 Relational Algebra

XQuery Core is compiled into Relational Algebra. This phase is subject to the most modifica-
tions in the Pathfinder compiler: All compilation rules have to be drilled out to at least accept
an additional score column, some of them even need to generate extra code to mangle the scores.

Although the PathfinderFT compiler could benefit from an additional Relational Algebra prim-
itive tailored towards Full Text, this is not obligatory. The current implementation works without
such an operator, and hence requires no extensions to the subsequent Pathfinder compilation
phases. Section 5.21.1 shines a light on a possible specialised Relational Algebra operator.

4.1.3 NEXI

Due to the absence of a specialised operator, other means are required to pass information about
Full Text expressions to the underlying scoring machinery.

To this end, PathfinderFT creates code which, at runtime, calculates a representation of the
Full Text query, which is then passed to the underlying PF/Tijah engine via a function call.
The details of this, and alternatives, are explained in Section 5.22.

* * *

The overall architecture of the Pathfinder
FT

system is depicted Figure 2 on page 37. The
shaded area below the thick line represents the available MonetDB/Pathfinder, and PF/Ti-
jah systems, both consuming XQuery as input (the latter making use of XQuery function
calls that trigger the scoring engine in the back-end).

Above the thick line the PathfinderFT subsystem is shown. The XQuery part of XQuery
Full Text is translated to XQuery Core in a pretty usual way, while the Full Text part
can be compiled in alternative ways described in Section 5.22. The constructed XQuery Core
expression is then compiled into Relational Algebra, which adds the scoring infrastructure. The
Relational Algebra code this step generates is fed to the optimiser of the original Pathfin-
der compiler, speckled with similar function calls to the Full Text engine as employed by the
PF/Tijah system.

4.2 The Pathfinder compiler

The Pathfinder compiler is a purely relational XQuery compiler. Purely relational means
that all document storage and query processing is done on a relational database back-end. So
Pathfinder’s task is to translate data and query into a relational language, and to decode the
database’s response.

XML documents are first transformed into a relational encoding [9] and stored in the relational
database back-end. XQuery queries are then compiled into relational algebra plans that are exe-
cuted on the database. The database returns the resulting XML document in the aforementioned
relational encoding, which is then decoded into plain XML.

The motivation behind this is to exploit the maturity of available relational engines for XQuery
processing. To see that this is not a trivial task, observe some of the fundamental differences
between XML and relations:
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Figure 2: Architecture of the Pathfinder
FT

system, and its location within the environment formed
by Pathfinder, MonetDB, and PF/Tijah. The shaded area below the thick line shows previously
existing systems.

• Relations are unnested, while XML data is nested.

• Relational algebra is set-oriented, whereas XQuery is sequence-oriented.

• A relational database schema is a set of attribute-name to type mappings, in contrast, an
XML schema is expressed via an augmented context-free grammar (e.g., Relax-NG, XML
Schema).

Despite these challenges, the Pathfinder developers came up with a scalable, high-performance
solution for XQuery [16]. The PathfinderFT project described in this thesis extends the Path-
finder technology to XQuery Full Text.

This chapter describes the Pathfinder technology to an extent sufficient for understanding the
extensions provided by the PathfinderFT system. It does not present new work, and it may
deviate from the original Pathfinder implementation for brevity and simplicity of presentation.
A more thorough explanation of the Pathfinder system can be found in [21]
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4.2.1 Basic XQuery data structures

When processing XQuery queries, one has to deal with two separate data structures: XML data
forms the queried trees, and is held in the database.

XQuery item sequences are the principal kind of data used in the XQuery language. An item
is a value of a primitive type, such as Integer, String, Boolean, or Node. An item sequence is an
ordered, flat list of zero or more items, potentially of heterogeneous type. These sequences are
never nested, i.e., they are always flat, and a singleton item sequence is indistinguishable from
the contained item alone. The following sequences are thus equivalent:

(1, 2, "foo") ≡ ((1), (2, "foo"))

42 ≡ (42, ())

We say that a node in an item sequence is represented by its node ID γ, also called node surrogate,
which is a pointer into the document storage. The storage architecture is not of interest in this
work, the only requirements we make use of is that

• a node can be uniquely identified by its ID, and

• the database engine provides means to navigate within the trees by using a dedicated
interface function (the step operator �α,n, see Section 5.8).

Just for completeness the next section briefly describes the encoding.

4.2.2 Pathfinder’s XML encoding

Pathfinder/MonetDB employs a schema-oblivious relational encoding of XML data, which
allows for fast XPath axis steps [9]. The basic idea is to perform a depth-first traversal of the
XML document tree, and to annotate each node with its pre-order and post-order numbers. The
pre-order number reflects document order, and also serves as node identifier. The post-order
number of a node is used to reconstruct the tree structure.

A simple example document is encoded as follows:

<a><b>foo</b><c>bar<d/></c></a> ≡

pre post node
0 5 <a>

1 1 <b>

2 0 "foo"

3 4 <c>

4 2 "bar"

5 3 <d>

Different encodings are feasible without loosing the tree structure. E.g., one might trade the
post-order number for the size of the corresponding subtree.

Within the scope of this thesis it is sufficient to consider the XML storage a black box, with the
property that each node in an XML tree can be identified with its node ID, and that XPath
axis steps can be performed. Here, the notation γ1 is used to refer to the node with ID 1, i.e.,
<b>foo</b>.
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4.2.3 Pathfinder’s XQuery item sequence encoding

The Pathfinder compiler uses a technique called loop-lifting to represent an XQuery item
sequence for all iterations it appears in at once, i.e., the relational encoding of a sequence spans
all iterations of its lifetime. For each item that is contained in the sequence, the corresponding
relation denotes the value of the item, the position it occupies in the sequence, and the iteration
during which this judgement is valid.

An example:

for $i in (10,20,30)

return ($i,"x")

The whole query, and hence the sequence (10,20,30), appears in one top-level iteration. The
sequence iterated over is encoded into a relation with schema iter|pos|item, and an accompanying
loop relation enumerates the iterations for the scope of the sequence.

(10,20,30) ≡

iter pos item
1 1 10
1 2 20
1 3 30

, loop ≡ iter
1

The variable $i bound by the for-loop appears in three iterations, containing only one value at
a time. Thus, the according encoding is

$i ≡

iter pos item
1 1 10
2 1 20
3 1 30

, loop ≡

iter
1
2
3

The sequence ($i,"x") represents a 2-sequence during each of the three iterations. The encoding
reads

($i,"x") ≡

iter pos item
1 1 10
1 2 "x"

2 1 20
2 2 "x"

3 1 30
3 2 "x"

, loop ≡

iter
1
2
3

The whole query, as said, appears in one top-level iteration. Hence a back-mapping step trans-
forms the in-loop representation of the sequence ($i,"x") to a representation of the constructed
sequence:
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for $i in (10,20,30)

return ($i,"x")
≡

iter pos item
1 1 10
1 2 "x"

1 3 20
1 4 "x"

1 5 30
1 6 "x"

, loop ≡ iter
1

which represents the query result (10,"x",20,"x",30,"x").

An empty sequence is represented by iterations that are present in the loop-relation, but not in
the sequence encoding. In the following example, variable $v lives in a scope that is iterated over
three times, and it represents the sequences ("a"), (), and (23,"b") during the first, second,
and third iteration.

$v ≡

iter pos item
1 1 "a"

3 1 23
3 2 "b"

, loop ≡

iter
1
2
3

4.2.3.1 Sequences that contain XML nodes

If an XQuery item sequence contains an XML node, the corresponding encoding simply refers
to the respective entry in the pre|post table. The notation γ1 is used to depict the node surrogate
of the XML node with ID 1.

A small example demonstrates this: Consider the sequence containing the number 42, and the
element node <c> from the document used on page 38. With the document encoded as above,
this very sequence is encoded by

(42, <c>bar<d/></c>) ≡
iter pos item
1 1 42
1 2 γ3

, loop ≡ iter
1

where γ3 identifies node <c> in the document.

* * *

With the relational encodings in place, the remaining task for the Pathfinder compiler is to
translate the XQuery expressions into Relational Algebra expressions that work on the encoded
data to return a result that is an encoding of the result to be expected from evaluating the
XQuery expression. This is completely covered in [21]. To show the extensions made for Path-

finderFT in a proper context, Chapter 5 partially replicates that work by showing the complete
compilation rules.
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4.3 Pathfinder
FT

as a compilation phase

The compilation rules provided by the PathfinderFT compiler can be seen as an alternative
initial phase for the original Pathfinder compiler, see Figure 2 on page 37. Pathfinder

FT

compiles XQuery Full Text into Relational Algebra plans as used by the original Pathfinder
compiler. Intentionally, no optimisation takes place in this phase. The created plan is then further
processed by the Pathfinder compiler, which cares about optimisation. Hence, the Pathfin-
der compiler does not need to know about scoring and scoring models. The only required
property of Pathfinder is that it allows the extension of its XQuery sequence representation
with one further column to host scores.

The PathfinderFT compilation separates parts of the query that can be handled by the Path-
finder compiler, from those parts that need processing by the Full Text machinery. The Path-
finder compiler optimises the created plan, without further knowledge about the Full Text
language or its interpretation. Only the executing engine is required to have access to a Full
Text back-end, which is called via function calls embedded in the emitted Relational Algebra
code. PF/Tijah is used in the current implementation.

Section 2.2.2 already mentions the idea of regarding XQuery Full Text items as pairs of an
XQuery value and a score. The main idea of this work is to extend Pathfinder’s iter|pos|item
scheme presented in the previous section with one additional, and ubiquitous score attribute that
stores the score of the item in the corresponding row.

The compilation from XQuery Full Text to Relational Algebra makes the score propaga-
tion explicit, which was previously implicit in XQuery Full Text (see Section 2.2.2.4). The
required changes made to the original Pathfinder’s compilation form the core of this work.

The scores are ubiquitous in that this addition of a score column is done for all items that
occur in an XQuery Full Text query, i.e., Pathfinder’s sequence encoding is changed from
iter|pos|item to iter|pos|item|score in all compilation rules. Even though some of the attached
scores will never be used, doing so improves the orthogonality of the generated Relational Algebra
expressions. It is a matter of optimisation to remove the scores, and their calculation, from all
items and expressions that do not make use of them.

In fact Pathfinder will later prune unused score columns, and related calculations from the
query plans. Ideally, the Relational Algebra plan of a query that does not make use of full-text
extensions should look the same, no matter whether it was compiled with Pathfinder

FT
or

the original Pathfinder compiler. Unfortunately, this is not true for the current prototype
implementation, because it already generates different plans for plain XQuery queries. It is the
case, however, that a plan compiled by PathfinderFT from an XQuery query does not contain
scoring related operations after optimisation, even though they have been introduced for each
and every subexpression in the initial plan generation.
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The Compilation Rules

In this chapter, the compilation rules of the PathfinderFT compiler are explained, as well as
their modification compared to the original Pathfinder compiler. Those parts of the rules that
form the score propagation are outhoused, to form an interface for a scoring model. This is done
here by giving them function names starting with the prefix sm.

While examples of possible implementations of a scoring model are given, the intention is not to
describe precisely how score propagation should happen, but rather how it can be implemented
on top of Pathfinder. Hence, the given implementations of the scoring model functions should
be considered examples, they are not intended to work as a top-notch IR system. Instead, I have
tried to point out peculiarities and pitfalls that come along with implicit score propagation. See
Section 2.3.3 for a discussion of a different interpretation of scores. To implement them, the line
between score propagation and value calculation would blur, and the compilation rules below
would need some rewriting.

Being a proof of concept prototype, PathfinderFT lacks several features. Among these, I
consider the complete absence of a type system most crucial. This bans language constructs like
type-switches, correct recognition of predicates (although I do show their compilation, once they
are identified), or functions like fn:boolean().

Most of the XQuery constructs have the same form in XQuery Core. For brevity I describe
their compilation as if the intermediate step via XQuery Core would be omitted, i.e., I show
a direct compilation of a core language. Only for those cases where the intermediate step is
required, e.g., quantified expressions (Section 5.15), or accessing XML structures (Section 5.18),
it is explained in detail.

5.1 Notation and Relational Algebra operators

PathfinderFT’s target language is the Relational Algebra understood by the Pathfinder com-
piler. Table 1 on page 44 summarises the Relational Algebra operators used, which does not
completely display the operators available in the real-world Pathfinder compiler, see Chapter 1.

Juxtaposition is used for function application (i.e., f x instead of f(x)), and multiple arguments
are just named one after the other (i.e., f x y instead of f(x, y)). Curried notation is used, and
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a b
1 "foo"
2 42

Relations may be specified literally. Here: Schema a|b, and the tuples
{(1, "foo"), (2, 42)}. The attributes are of polymorphic type.

πfoo
bar:qux

r Projection of relation r on the attributes foo, and qux, the latter being
renamed to bar. Multiple attribute renamings can be specified.

@a:v r Attach a new attribute a with constant value v to relation r.

σa r Select those tuples from the relation r where the Boolean attribute a is
true.

r ] s The disjoint union of relations r, and s.

r \ s Difference, i.e., all tuples in r that are not in s.

r on
a=b

s The join of the relations r and s, the predicate being equivalence of the
attributes a and b.

r × s The Cartesian product of the relations r and s.

%e:(a1,...,an)/g r Row numbering of relation r groups the tuples by a grouping attribute g
if it is provided, and (group-wise) densely enumerates the tuples in r, ac-
cording to the sort key (a1, ..., an). The enumeration is stored in attribute
e, tuples with duplicate sort keys receive different numbers.

ρk:(a1,...,an) r Row ranking ranks the tuples in r, according to the sort key (a1, ..., an).
The ranking is stored in attribute k. In contrast to %, tuples with dupli-
cate sort keys receive the same ranking. Grouping is not available. This
operator can be used to identify groups in a relation which are determined
by multiple keys.

δ r Duplicate removal. Pathfinder uses bag semantics Relational Algebra.

�α,n r An XPath axis step with axis α and node test n. See Section 5.8.

elemiter
item

r Element construction used for twigs, see Section 5.19.

contiter
item
pos

r Content construction used for twigs, see Section 5.19.

agga:f b/g r Aggregation of relation r groups the tuples by a grouping attribute g if
it is provided, and (group-wise) aggregates the values in column b, using
function f , and returns the result value in attribute a. The schema of the
resulting relation is a|g if grouping is performed, or just a otherwise.

opa:b+c r This tuple-wise operation adds a new attribute a, which contains the sum
of the attributes b and c.

funf l [r1, ..., rn] Call a built-in Relational Algebra function f , passing loop-relation l and
a list of argument relations r1 through rn. See Section 5.21.2.

Table 1: Operators of the target Relational Algebra language. The infix operators (i.e., ], \, on, and
×) associate to the left, and have lower precedence than the prefix operators, which bind just as function
application does.
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function application associates to the left:

f x y ≡ (f x) y 6≡ f (x y)

Parenthesis are used for grouping, function application always binds tighter than infix operators,
prefix operators bind as function application does. Infix operators associate to the left unless
otherwise noted. The usual precedence rules apply for arithmetic expressions, and I’d rather use
parenthesis for grouping than defining a precedence for each of the Relational Algebra operators
in Table 1 on page 44.

Function composition is denoted by the infix operator ◦, i.e., (f 3 ◦ g) x ≡ f 3 (g x).

The infix application operator / associates to the right. Basically f / x means just f x, but
/ has lowest precedence, and thus serves as a means to reduce parenthesis:

e (f (g (h x))) ≡ (e ◦ f ◦ g ◦ h) x ≡ e / f / g / h x ≡ e / (f / (g / (h x)))

Haskell programmers recognise their precious $ operator here, others may understand it as
a “data flow” operator, which provides the output of its right argument as input to its left
argument — since / associates to the right, data “flows” from right to left.

Tuples are represented as usual (1, 2, 3), lists are denoted by brackets instead of parenthesis:
[1, 2, 3]. Note that this is Relational Algebra notation, XQuery, of course, uses parentheses for
item sequences, and does not know about tuples.

Types Types of functions are given (only rarely, but then) in a curried style, i.e., f :: α →
β → γ declares a function f consuming something of type α and returning a function of type
β → γ. To this end, the type constructor → associates to the right.

To avoid the restriction of scores to the domain of floating point values, the type Score is used
to denote the type used to represent scores.

The type of a relation with schema iter|pos|item is represented by Reliter,pos,item. The attributes
are of polymorphic type.

The type of a list of values of type α is denoted by [α].

5.2 Compilation Framework

Compilation is defined by the function
q
·
y

Γ,L
, which maps its argument, an XQuery expression,

to the compiled target Relational Algebra expression. Compilation is further parametrised with
an environment Γ, L, shown as subscript.

As explained in Section 4.2.3, a loop relation L is maintained for each variable scope. It contains
a single column named loop that contains all the iterations the respective scope occurs in.

Variables can be bound by for and let-clauses. The set of bound (i.e., available) variables is
stored in the variable lookup function Γ in a loop-lifted manner, i.e., it contains the representation
of all item sequences a variable refers to during its life in all iterations. Hence, it maps a variable
name to an iter,pos,item relation.
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5.2.1 Fragments

An XML fragment is a consecutive part of an XML document, or, in other words, a sequence of
XML nodes. This may refer to fragments of a document in the database, or to nodes constructed
by the query. Different subexpressions of a query may create different fragments:

( doc("foo.xml")//a, <b>42</b> )

Here, the subexpression doc("foo.xml")//a calculates an item sequence that contains node
surrogates, each pointing to an <a>-node from the fragment which represents the document
foo.xml. Subexpression <b>42</b> returns a singleton item, pointing to a node in a newly
constructed fragment. The top-level expression yields an item sequence that refers to nodes from
different fragments.

Pathfinder handles this by calculating a fragment union that contains the disjoint union of
the fragments of the subexpressions. Disjointness is guaranteed by never reusing node identities.
Hence, each compilation of both subexpressions in the above example returns a Relational Alge-
bra expression calculating the corresponding item sequence encoding, and additionally returns a
fragment containing the XML nodes referred to by this sequence. Compilation of the top-level
expression then returns a Relational Algebra expression calculating the combined sequence, plus
the united fragments returned from the subexpressions.

To simplify the presentation, the fragment handling is silently ignored in the following discussion.
Basically, one can assume that the compilation of an expression not only returns a Relational
Algebra plan to calculate the item sequence, but also a Relational Algebra plan to calculate the
respective fragment, i.e., a pair of plans is returned. The step operator discussed in Section 5.8,
behaves like a join, and makes use of both plans. In Section 6.7 snippets from the prototype
implementation are shown that do demonstrate fragment handling.

* * *

The compilation rules for XQuery to Relational Algebra compilation have been developed by
Torsten Grust et al., [16]. The compilation rules presented here are modifications of the original
work as presented in [21], with adaptations that were necessary to keep up with Pathfinder
development, see Figure 1 on page 11.

5.3 Literals

To achieve orthogonality, each item is annotated with some score. Of course, this also applies
to literals, although a score on a literal might not make much sense from an IR point of view.
However, Pathfinder

FT
will happily accept a query like

let score $s := "foo" return $s

and therefore needs some default score value µ to return.

Depending on the scoring model and the data type used for scores, different values may be used
here, see Section 5.23. To represent “not scored”, or “no valid score”, the XQuery Full Text
draft would allow for −1 here. Supporting back-ends might want to use null, but then a mapping
to the XQuery space is required when binding this to a variable.
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A literal XQuery item c, is compiled into an iter,pos,item,score relation, where the iter column
depends on the current loop-relation.

q
c
y

Γ,L
= L×

(
smDefault

pos item
1 c

)
where

smDefault = @score:1

The adoption made is to apply a function smDefault to the pos|item table, which adds the default
score. (Throughout this work, the prefix sm is used for function names that implement score
propagation of the scoring model. Section 5.23 gives an overview.) This implementation of
smDefault attaches a score of 1 to the argument.

5.4 Variables

The variable lookup function Γ can be taken directly from the original Pathfinder compiler.
The returned values will already carry the attached score columns. Also, loop-lifting has already
been performed on all variables in Γ.

q
v
y

Γ,L
= Γ v

Although not depicted in the formula, a variable not only carries the encoded item sequence, but
also the associated fragment information.

5.5 Sequences

A sequence of expressions is compiled, by attaching a column ord to each of them, containing
an integer value that represents the position of the expression within the sequence. The disjoint
union is calculated, and the newly introduced columns are projected away. As the only extension,
during this last step it is required to keep the score column alive.

q
(e1, ..., en)

y
Γ,L=

πiter
pos:pos1
item
score

/ %pos1:(ord,pos)
/iter

/
(
@ord:1

q
e1

y
Γ,L
] ... ] @ord:n

q
en

y
Γ,L

)
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5.6 The let-clause

XQuery Full Text adds a new keyword score to the let-clause, which can be used to bind
a score to a variable. The proposed usage is

let score $s := $doc/a[. contains text "foo"] return $s

to bind the variable $s to a single combined score, which is some sort of combination of the
scores of the items returned by the assigned expression.

It is worth noting that the expression $doc/a[. contains text "foo"] may return an item
sequence containing multiple <a>-nodes with different scores. Nevertheless variable $s is bound
to a singleton score.

Although the XQuery Full Text draft does not allow for the binding of a score variable and
a “normal” variable by the same let-clause, Pathfinder

FT
happily compiles

let $x score $s := $doc/a[. contains text "foo"]

return ($x,$s)

which would —according to the XQuery Full Text draft— require the more verbose but less
elegant syntax

let $x := $doc/a[. contains text "foo"]

let score $s := $x

return ($x,$s)

In the proposed data model, this is only a matter of calculating the new score from a list of
already calculated scores, and to enrich the environment Γ with bindings for the newly introduced
variables i and s. Thus, the compilation of a let-clause is as follows:

q
let i score s := e1 return e2

y
Γ,L

=
q
e2

y
Γ′,L

where

Γ′ v =


q
e1

y
Γ,L

if v ≡ i
smDefault / @pos:1 / πiter

item:score
/ smLet L

q
e1

y
Γ,L

if v ≡ s

Γ v otherwise.

Adding the case where v ≡ s to the lookup function is the only extension required. Note that
the scores from e1 become values during this step, and hence need a score attached. This is done
by applying smDefault.

Unfortunately, a score must be provided even for the empty sequence. Consider the following,
where a score is to be constructed out of nothing:

let score $s := () return $s

The loop relation L is used to calculate the empty sequences in e1, and the following implemen-
tation of smLet returns the default score for empty sequences. For non-empty lists, e.g., the
scores can be averaged.

smLet L e′1 = aggscore:
avg score
/iter

e′1 ] smDefault (L \πiter e′1)
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5.7 The for-clause

The for-loop implements the concept of loop lifting as exemplified in Section 4.2.3. XQuery
Full Text adds a new keyword score to the for-clause, as in

for $v at $p score $s

in $doc/a[. contains text "foo"]

order by $s

return <item>

<pos>{ $p }</pos>

<score>{ $s }</score>

<value>{ $v }</value>

</item>

Its semantics is that in the scope of the return and order-by clauses, the variable $s is bound to
the score of the current item (which is bound to $v here; its position is bound to $p).

Compilation is easily extended with the scoring infrastructure: The outermost projection is
extended with the target column score, while the back-mapping step remains unchanged.

q
for i at p score s in e1 order by o1, . . . , on return e2

y
Γ,L=

πiter:outer
pos:pos1
item
score

/ %pos1:(sort1,...,sortn,inner,pos)
/outer

/ M1 on
inner=iter

e′2

The input expression e1, the loop relation L′ and the order-retaining map relation M are trans-
lated just as in the original compiler.

e′1 =
q
e1

y
Γ,L

K = %inner:(iter,pos) e
′
1

L′ = πiter:inner K

M = πouter:iter
inner

K

The only prominent extension happens to the variable lookup function Γ′, which is enriched
with a new binding for the score variable s. The newly introduced items, which are bound to
the variables p and s respectively, are annotated with a new default score, as already discussed
for the let-clause and literals.

Γ′ v =



@pos:1 / πiter:inner
item
score

K if v ≡ i,

smDefault / @pos:1 / πiter:inner
item

/ %item:pos
/iter

/ πinner
iter
pos

K if v ≡ p,

smDefault / @pos:1 / πiter:inner
item

/ πinner
item:score
iter
pos

K if v ≡ s,

πiter:inner
pos
item
score

(M on
outer=iter

Γ v) otherwise.

The algebraic expression for the case “v ≡ s” is almost only a copy of the expression used for
“v ≡ p”, the only difference being that the item column is not calculated by row numbering, but
projected from the score column instead, which is exactly the semantics intended.
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To comply with orthogonality, the positions bound to variable p need to have the default score
attached as well.

With Γ′ and L′ the compilation of the return expression e2 and the order-by expressions oi are
straightforward,

e′2 =
q
e2

y
Γ′,L′ and o′i =

q
oi

y
Γ′,L′ where 1 ≤ i ≤ n.

Also, the respectively reordered back-mapping relation M1 is calculated as in the Pathfinder
compiler with

Mi =



M if i ≡ n+ 1,

πouter
inner
sorti:item
sort(i+1)

...
sortn

(o′i on
iter=inner

Mi+1) if 1 ≤ i ≤ n.

5.8 Axis steps

It is desirable to propagate the score of a context node to the target nodes found through an
axis step. While one context node can have several target nodes in the direction of the axis, it
is also possible that multiple context nodes lead to the same target node. According to XPath
specifications, there must not be duplicates in the result of an axis step. This gives rise to a
function smStep that maps the scores of all related context nodes to the score of the target node.

Pathfinder’s step operator behaves like a join between the relation encoding the document
(the type of which is denoted by D), and the sequence of context nodes respectively:

�α,n :: D → Riter,item → Riter,item,ctx

This operator does not remove duplicates as required by XPath semantics. Instead, for each
context node all target nodes are returned, and annotated with the respective context node in
the ctx column. The pos columns are not used here, since argument and result are considered
sets of nodes. Only when calculating the final item sequence the document order needs to be
restored by adding a pos column.

a

b x

x

0

1

2

3

Consider the XML document d = <a><b><x/></b><x/></a>, with the dis-
played tree representation. The numbers indicate node IDs.

Performing an axis step /descendant::x from the context set (γ0, γ1) shown
in red, returns the result set (γ2, γ3) shown in blue. Note that γ2 is a target
from both context nodes, while γ3 is not a descendant of γ1. This situation
is reflected in the context attribute ctx returned from the step operator.

iter item
1 γ0

1 γ1

�/descendant::x d−−−−−−−−−→

iter item ctx
1 γ2 γ0

1 γ3 γ0

1 γ2 γ1
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The introduced duplicates need to be removed by another Relational Algebra operator, and the
result nodes have to be annotated with pos values reflecting the document order.

Before doing so, PathfinderFT simply adds a score column to the input relation, and the step
operator willingly copies the scores along with the context information. This not only introduces
duplicates as above, it also propagates the score information from the context nodes to the target
nodes. Assuming the context set with scores to be (〈γ0|0.3〉, 〈γ1|0.5〉), the calculation reads

iter item score
1 γ0 0.3
1 γ1 0.5

�//x d−−−−→

iter item ctx score
1 γ2 γ0 0.3
1 γ3 γ0 0.3
1 γ2 γ1 0.5

It is now the responsibility of the surrounding Relational Algebra code to remove duplicates, add
a pos column, and aggregate the scores of identical target nodes:

q
e/α::n

y
Γ,L

= πiter
pos
item
score

/ %pos:item
/iter

/ δ(πiter
item
group1:group

g) on
group=group1

smStep g

where

g = ρgroup:(iter,item) / �α,n / πiter
item
score

q
e
y

Γ,L

smStep = aggscore:
avg score
/group

Fragment handling is not shown in this formula. The truth is that �α,n uses the fragment
information (d in the above example) returned from the compilation of e to perform the axis
step on the nodes identified by the context set. This technical detail is omitted here to unclutter
the formula, see Section 5.2.

Note that the result of the axis step is of type Reliter,item,ctx,score, and must be partitioned into
groups identified by all pairs of iter|item — for each iteration, identical items (i.e., nodes) must
have their scores aggregated. Since, however, the Relational Algebra operation for aggregation
only supports grouping according to one attribute, the groups must be identified first, which is
done when calculating g.

The above implementation of smLet uses the average to aggregate the scores of identical nodes.

5.9 Direct score manipulation

The PathfinderFT compiler adds a keyword scored to the XQuery Full Text language,
which is not defined in the XQuery Full Text draft. e1 scored e2 returns the item sequence
e1 with all scores set to e2, which is thus required to be a singleton value of type Score.

let score $s := "foo" scored 0.3

return $s
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evaluates to 0.3. The implementation is straightforward:
q
e1 scored e2

y
Γ,L

= πiter
pos
item
score

(πiter
pos
item

q
e1

y
Γ,L

on
iter=iter1

πscore:item
iter1:iter

q
e2

y
Γ,L

)

The score of e2 is lost in this operation. To allow for the application of scored scores, the following
construction may be used:

let $s score $ss := e2 return e1 scored $s * $ss

To merely alter the scores of the items in a sequence, e.g., by uniformly scaling them by e2,
the user may resort to a map construction as the following, which can be wrapped around any
XQuery item sequence e1.

for $i score $s in e1 return $i scored e2 * $s

The transition from value-space to score-space offered by the scored operator is somewhat dual
to what for and let offer: These make a score available as value, and allow its interpretation by
XQuery means. scored works in the opposite direction by moving a value beyond XQuery’s
horizon, and attaching it as score to another item.

5.10 Boolean operators

In XQuery, functions and operators are used to calculate some outcome based on their argu-
ments. XQuery Full Text score propagation adds the task of assigning a meaningful score to
the result value, potentially depending on the scores of the arguments.

The need for score propagation is most evident with Boolean operators (and, or, and not) when
used inside a predicate to combine the results of Full Text expressions:

for $i score $s

in doc("lib.xml")//book[

./authors contains text "Wallace" ftand "Gromit"

and ./abstract contains text "cheese"

]

order by $s descending

return $i/title

Note the distinction between the two “and” operators used: ftand is part of the Full Text
language, and it is used by the Full Text engine to rate the <authors> nodes depending on
their combined relevance with respect to the search terms "Wallace", "Gromit". In a separate
operation, the Full Text engine rates <abstract> nodes depending on their relevance with respect
to the search term "cheese". These two findings are then combined outside the Full Text
machinery in the final scored Boolean.

PathfinderFT achieves this by adding simple score propagation functions to the involved com-
pilation rules. E.g., the operator and can be compiled as follows:
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q
e1 and e2

y
Γ,L=

@pos:1 / πiter
item
score

/ smAnd / opitem:
item1∧item2

(πiter
item1:item
score1:score

q
e1

y
Γ,L

on
iter=iter2

πiter2:iter
item2:item
score2:score

q
e2

y
Γ,L

)

where

smAnd = opscore:
score1·score2

This implementation of smAnd multiplies the scores of its argument to calculate the resulting
score. The compilation rule for or is identical, modulo the obvious adaptation. Score propagation
is discussed below. Also, the unary operator not entails no surprises:

q
not e

y
Γ,L

= πiter
pos
item
score

/ smNot / opitem:
¬item1

/ πiter
pos
item1:item
score1:score

q
e
y

Γ,L

where

smNot = opscore:
score2−score1

◦ @score2:1

Here, the score is inverted by calculating not(〈v|s〉) = 〈¬v|1−s〉. To leave the score unmodified,
a simple projection is sufficient.

Unfortunately, careless implementation of the three score propagation functions smAnd, smOr,
and smNot may cause confusion: We all know that ¬(a∧b) ≡ ¬a∨¬b, and the user might also
expect this to hold when scores are involved. These two queries should then yield the same
result.

let score $s := not (a and b) return $s

≡
let score $s := (not a) or (not b) return $s

Using angle bracket notation 〈v|s〉 to denote an item with value v and score s, the score propa-
gation for Boolean operators is bound by DeMorgan’s law: Given

〈v1|s1〉 and 〈v2|s2〉 = 〈v1
∧v2|s1 · s2〉 and not(〈v|s〉) = 〈¬v|s〉

it immediately follows that

〈v1|s1〉 or 〈v2|s2〉 ≡ 〈v1
∨v2|s1 · s2〉

should hold as well, at least if the user expects such rewrites to yield the same result.

If the user chooses to invert the score on negation, and leave conjunction as above, it follows by
the same argumentation that

〈v1|s1〉 or 〈v2|s2〉 ≡ 〈v1
∨v2|s1 + s2 − s1 · s2〉

Pathfinder
FT

implements both choices, and it is a rather simple task to add further alternatives.
The user may set the pragma1 pfft:ftBool to switch between them. If set to "negInv" the
score is inverted on Boolean negation, if set to "negId" the score is left unchanged.

1declare namespace pfft = "http://stefan-klinger.de/ns/pfft/0.1";
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In both cases the scores for conjunction and negation are as discussed above.

If the scores are multiplied on disjunction, the rule reads as the one for conjunction. The following
implements the calculation of s = s1 + s2 − s1 · s2:

smOr = opscore:
item3−item4

◦ opitem4:
score1·score2

◦ opitem3:
score1+score2

PathfinderFT offers a third option, which, however, assumes positive and negative scores.
Setting the pragma pfft:ftBool to "extreme", the following equations are used:

〈v1|s1〉 and 〈v2|s2〉 = 〈v1
∧v2|min s1 s2〉

〈v1|s1〉 or 〈v2|s2〉 = 〈v1
∨v2|max s1 s2〉

not(〈v|s〉) = 〈¬v| − s〉

Using extremes for score propagation on Boolean operations becomes relevant when weights are
used to scale scores, (see Section 5.22.4.4). If scores were limited to the range [0..1], one may
also choose 1− s instead of just −s for the negation. This would look a bit like fuzzy logic (see,
e.g., [20]).

While neither the XQuery Full Text draft, nor PathfinderFT, impose any semantics on
scores, it is reasonable to think of scores as probabilities. [19] uses similar formulas as the
ones described here to aggregate probabilities. Depending on the aggregation assumption, i.e.,
whether these are independent, disjoint, or subsumed, a different formula is used. The authors
present a modified SQL select statement that allows to specify the assumption. Similar, Path-
finderFT allows the use of XQuery Full Text pragmas to specify the aggregation algorithm.

5.11 Conditional expression

For a conditional expression if e0 then e1 else e2, evaluation of the condition e0 yields a
Boolean for each iteration, indicating which of the two branches (exactly one in each iteration)
is to be used to calculate the result. The strategy here is to calculate two separate loop relations
L1, L2, for each case, and to compile the two branches e1, and e2 with the environment updated
respectively.

q
if e0 then e1 else e2

y
Γ,L=

πiter
pos
item
score:score2

/ smConditional / πscore1:score
iter1:iter

q
e0

y
Γ,L

on
iter=iter1

(q
e1

y
Γ1,L1

]
q
e2

y
Γ2,L2

)
where

L1 = πiter / σitem
q
e0

y
Γ,L

, L2 = L \L1 , Γi v = πiter
pos
item
score

/ Γ v on
iter=iter1

πiter1:iter Li

smConditional = opscore2:score1·score

The variable lookup functions Γi are restricted versions of Γ, where the iterations not used in a
branch are stripped from the variable representations.

The score propagation shown multiplies the score of the predicate with the score of the result of
the chosen branch.
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This violates some equivalences the user might expect, if combined with the choices offered in
Section 5.10. To see this, e.g., consider the following two expressions for Booleans $a, $b, and
$c:

($a and $b) or (not($a) and $c) vs. if $a then $b else $c

Without scoring involved, the user will expect identical results here. With scoring, however, the
left hand side expression always carries score information that is influenced by $a, $b, and $c.
For the right hand side, only the score from $a, and either $b or $c will influence the result
score.

Doing otherwise is not an option though, because this would leverage the semantics of conditional
expressions: First, both branches would have to be evaluated to find the score of the branch that
was not selected by the predicate. Second, what should happen with the value from that branch?

Other examples that bear the same connection are:

if $a then false() else true() vs. not($a)

if $a then $b else false() vs. $a and $b

if $a then true() else $b vs. $a or $b

and also the symmetric versions of the latter two. With scoring, these are not necessarily
equivalent.

I was unable to find conditional expressions in IR literature (e.g., [2]), thus it appears to me that
if-then-else constructs are not a feature widely used in IR languages. In fact, they do not
even appear in the Full Text part of XQuery Full Text. Only since scores are attached to
items, it is required for the (formerly pure) XQuery conditional expressions to somehow deal
with them.

From a probabilistic point of view, [6] describes how probability inference must look, and the
author does not present conditional expressions. The only other paper I have found in that
direction, is [12]. The author links programming, Information Theory, and (Subjective) Bayesian
probability, and thereby makes use of conditional statements. However, the expressions in his
languages always depict statements about some state (i.e., values assigned to variables). This
makes it easier to combine both branches of a conditional expression, since both represent prob-
abilities of values being assigned to a set of variables.

To adopt his strategy, it is required to combine two XQuery items into one. An approach to do
so is sketched in Section 7.2.

5.12 Node set operations

XQuery offers operations on node sequences that resemble set operations: Two duplicate free
sequences of XML nodes can be combined using one of the operators union, intersect, or
except (XQuery’s node set difference). The result is the result of a set operation (i.e., duplicates
are removed), ordered in document order. While these operations are easy to implement in
Relational Algebra for the unscored case, they become more expensive as soon as scoring is
involved.

Diverging from what is presented here (see Section 2.3.3 why), scores can be seen as a probability
of sequence membership. Again, as for Boolean operators (Section 5.10), it may be appropriate do
distinguish how these probabilities relate. The corresponding aggregation functions are described
in [19] for a Probabilistic Relational Algebra, or, e.g., in [20] for Fuzzy Logic semantics.
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5.12.1 Union

To calculate the union it is sufficient to aggregate the scores grouped by iter/item pairs, a con-
struction already used for smStep in Section 5.8:

q
e1 union e2

y
Γ,L

= %pos:item/iter / πiter
item
score

/ δ (πiter
item
group

g) on
group=group1

πgroup1:group
score:score1

(smUnion g)

where

g = ρgroup:(iter,item) /
q
e1

y
Γ,L
]

q
e2

y
Γ,L

smUnion = aggscore1:
avg score
/group

Since aggregation is used to calculate the resulting score, it would be easy to extend the binary
union operator to an n-ary one, calculating the union of multiple node sequences in one go.

5.12.2 Intersection

The intersection of two sets of scored elements is more difficult: The intersection is to be cal-
culated on partial tuples, i.e., tuples are to be identified by only some of their attributes, since
scores shall not be used to distinguish elements (see the discussion of equality, Section 2.3.2).
This bans plain Relational Algebra intersection from being used. Instead, a multi-predicate
equi-join2 is required, pairing those nodes with the same iter/item pairs, and leaving the score
information intact.

q
e1 intersect e2

y
Γ,L=

%pos:item
/iter

/ πiter
item
score:score2

/ smIntersection / πiter
item
score

q
e1

y
Γ,L

on
iter=iter1
item=item1

πiter1:iter
item1:item
score1:score

q
e2

y
Γ,L

where

smIntersection = opscore2:score·score1

5.12.3 Difference

Nodes that occur on the right hand side are simply removed from the set of nodes on the left
hand side. The scores of the remaining nodes need to be removed to calculate the intersection,
and reattached afterwards.

q
e1 except e2

y
Γ,L

= %pos:item
/iter

/ πiter
item
score

/ πiter1:iter
item1:item
score

e′1 on
iter=iter1
item=item1

(πiter
item

e′1 \πiter
item

q
e2

y
Γ,L

)

where

e′1 =
q
e1

y
Γ,L

The scores are not modified in this implementation, which may look strange at first. This,
however, is a consequence of the design decision made by the W3C to attach scores to values,
see Section 2.3.3.

2The current Pathfinder
FT

implementation uses a theta-join, since the available equi-join does not support
multiple comparisons
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5.13 The function fn:exists()

The function fn:exists() takes an XQuery item sequence as argument, and returns false iff
the sequence is empty. So the implementation has to check which of the iterations mentioned in
the loop-relation are present in the sequence encoding, see Section 4.2.3.

If the semantics of the score is confidence in the accuracy of a value, then a non-empty sequence
should be mapped to true with the default score denoting absolute confidence:

fn:exists( $doc contains text "foo" )

No matter what the outcome of the Full Text expression is, there certainly is a value, namely
the Boolean returned from the Full Text engine. I.e., the user might expect true with absolute
confidence, no matter what the score assigned by the Full Text machinery actually is.

In contrast, if scores are used to define a graduation of truth, the result score might very well
depend on the scores available in the input sequence:

fn:exists( $doc/chapter[. contains text "Wallace" ftand "Gromit"] )

The returned score might depend on how well some of the chapters match the Full Text expres-
sion. In principle, fn:exists has no chance to relate the number of matching documents to the
number of non-matching ones.

Hence, it may be unwise to return false with the default score for an empty input sequence. To
this end, PathfinderFT offers two functions, smExist, and smMiss, to calculate the return score
of a non-empty or an empty input sequence:

q
fn:exists( e )

y
Γ,L

= t ] f
where

t = @item:true / smExist / πiter
pos
score1:score

q
e
y

Γ,L

f = @item:false / smMiss (L \πitert)

An implementation that averages the scores of non-empty sequences, and that uses the default
score for empty sequences can be achieved by choosing:

smExist = aggscore:
avg score1
/iter

smMiss = smDefault

5.14 Other built-in functions

Basically, the concept of score propagation described for the Boolean operators can be extended
to handle most built-in functions in the same way (though this might not be wise to do in all
cases, see Section 5.13 for an example).

If scores denote confidence in a value, every calculation based on these values requires the confi-
dence to propagate to the result. This can even be done for simple arithmetics.

With the PathfinderFT architecture, it is quite simple to handle score propagation for all
such operators. Let ⊗ ∈ {+,−, ∗, div, mod, lt, le, gt, ge, ne, eq} be a binary operator between



58

singleton items (XQuery uses existential semantics for comparison operators such as <, <=, >,
>=, !=, and =. These are handled in Section 5.17, here, only the corresponding value comparison
operators are considered).

q
e1 ⊗ e2

y
Γ,L=

@pos:1 / πiter:iter1
item
score

/ smFun⊗ / opitem:
item1⊗
item2

(πiter1:iter
item1:item
score1:score

q
e1

y
Γ,L

on
iter1=iter2

πiter2:iter
item2:item
score2:score

q
e2

y
Γ,L

)

Suitable implementations of all the functions in the smFun⊗ family certainly depend on the
intended score semantics.

* * *

The following sections use XQuery Core as an intermediate compilation step, i.e. an XQuery
Full Text expression is replaced by an equivalent XQuery Core expression, which is then
compiled as discussed above. It is evident that doing so “inherits” the score propagation defined
for the more primitive XQuery Core constructs.

5.15 Quantified expressions

Quantified expressions are translated to a combination of fn:exists() and a loop:

some $v in e1 satisfies e2

is translated to

fn:exists( for $v

in e′1
return if e′2

then 1

else ()

)

where the loop creates a sequence that contains the integer 1 for each item in e1 that makes e2

evaluate to true when bound to variable $v. e′i is the XQuery Core version of ei.

The all-quantification

every $v in e1 satisfies e2

is simply translated to

not(some $v in e1 satisfies not(e2))

which is then processed as above.

These compilation rules inherit score propagation from the fn:exists function (Section 5.13),
and from conditional expressions (Section 5.11). I.e., smExist, smMiss and smConditional are
involved here.

The scores of values in e1 is lost in the term
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for $v in e1 return if (e2) then 1 else ()

since the integer 1 is generated with the default score. A slight adaption can be used to propagate
the scores from e1 as well:

fn:exists( for $v score $s

in e′1
return if e′2

then 1 scored $s

else ()

)

In this transformation the score extracted from the current item in e1 and bound to variable $s

by the for-loop, is reattached to the generated integer 1 by the scored keyword (Section 5.9).

5.16 Predicates

XQuery offers three kinds of predicates, namely Boolean, existential, and positional ones. All
three are subject to score propagation.

5.16.1 Boolean Predicates

For a Boolean predicate e2, the XQuery Core representation of e1[e2] is

for dot
in e′1
return if e′2

then dot
else ()

where dot is the iteration variable available as “.” in the predicate, and e′1 and e′2 refer to
XQuery Core versions of e1 and e2 respectively.

This inherits the score propagation from for-loops and conditionals. Since the empty sequence
is returned from the false branch the way scores are calculated there is irrelevant.

5.16.2 Existential Predicates

Existential predicates can be traced back to Boolean predicates by using the function fn:exists.
For a (potentially empty) sequence of nodes e2, the XQuery Core representation of e1[e2] is

for dot
in e′1
return if fn:exists(e′2)

then dot
else ()

with dot, e′1, and e′2 as above. This inherits score propagation as do Boolean predicates, and also
from function fn:exists.
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5.16.3 Positional Predicates

Positional predicates are compiled in a similar way, using the positional variable available from
the for-clause. If e2 is a singleton numeric, the expression e1[e2] is compiled to

for dot at $cp

in e′1
return if $cp eq e′2

then dot
else ()

with dot, e′1, and e′2 as for Boolean predicates. This inherits score propagation as do Boolean
predicates, and also from comparison operation, i.e., via smFuneq.

5.17 General comparison

The XQuery general comparison operators <, <=, >, >=, !=, and = come with existential seman-
tics3. This can be implemented with quantified expressions: Any XQuery expression containing
one of the above operators is translated into an XQuery expression using the corresponding value
comparison operator (see Section 5.14):

The expression

e1 = e2

is translated to

some $i

in e′1
satisfies some $j

in e′2
satisfies $i eq $j

introducing, as usual, new variables $i and $j, and e′i the XQuery Core version of ei.

This translation inherits the score propagation implemented for quantified expressions. Thus,
the resulting score depends on smExist, smMiss, smConditional and the translation to XQuery
Core chosen for quantified expressions (see Section 5.15).

5.18 Accessing XML structures

Every time XML structures are used in an XQuery query, be it via document access, or by
explicit node construction, Pathfinder implements this via constructors. The idea is that such
a constructor, member of the Relational Algebra, returns something thatt contains an XML
fragment encoded in the way that Pathfinder uses for document encoding (see Section 4.2.2),
together with a representation of an XQuery item sequence (see Section 4.2.3) referring to the
roots of the fragment by node surrogates.

3http://www.w3.org/TR/2007/REC-xquery-20070123/#id-general-comparisons

http://www.w3.org/TR/2007/REC-xquery-20070123/#id-general-comparisons


61

Two Relational Algebra operators are used then to split the constructor’s output in two: frag
returns the relational encoding of the fragment, the details of which are not of interest here
(see Section 4.2.3), roots returns the XQuery item sequence that “contains” nodes from the
fragment.

Constructors are created by two Relational Algebra constructor functions

consTwig :: Twig→ Constr

consDoc :: Core→ Constr

the former is used to create XML nodes (see Section 5.19), the latter to access the database’s
document table (see Section 5.20).

Unfortunately, however, the Relational Algebra understood by the Pathfinder compiler handles
the result of a constructor as something special. As a consequence of that, one cannot simply
attach a score column to a constructor, which is why I use the type name Constr here to distinguish
it from the other relations with known schema. Thus, the scores of all relational input to
the constructor must be collected, combined, and the resulting score must be attached to the
relational output of the “roots” branch of the constructor.

In other words: Take the whole constructor as one single big Relational Algebra operator, with
the number of arguments depending on the constructor’s structure. Bypass the scores around
that operator.

To translate a constructor with score propagation, Pathfinder
FT

resorts to a different transla-
tion scheme

q
·
y∗

Γ,L
, which returns a pair of two relational algebra plans: One for the constructor

construction, and one for the score propagation. The scores appear in a loop-lifted fashion here,
i.e., they are encoded in an iter,score relation.

Compilation of twigs and document access is described in Section 5.19, and Section 5.20 respec-
tively. What remains when one of these constructors, name it c, is compiled with the extended
compilation scheme, is to access its root nodes and to add the scores returned from its compila-
tion. So let (c′, s) =

q
c
y∗

Γ,L
, then:

q
c
y

Γ,L
= @pos:1 / πiter

item
score

(s on
iter=iter1

πiter1:iter
item

(roots c′))

This rule, for simplicity and as all other rules in this discussion, does not show the use of frag.

5.19 Element construction

For element construction, Pathfinder uses twigs, specialised operators available at the Rela-
tional Algebra level, utilised to construct larger portions of XML documents —twigs— in one
go.

Taking a simplified view here, twigs are constructed by two constructor functions:

twigElem :: Core→ [Twig]→ Twig

twigContent :: Core→ Twig

To create an element node, twigElem takes an XQuery Core expression that calculates the name
of the element node, and a list of twigs that calculate the contents of the node. The returned twig
represents the calculation that builds the complete XML fragment. Element content calculated
by an XQuery Core expression can be added to a twig with the twigContent function.
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The goal of this construction is to create XML structures bigger than a single node in one go, to
avoid the cost of creating and encoding too many XML fragments.

If score propagation is desired on node construction, i.e., if the score of a newly created node
shall depend on the scores of its content, then a way must be found to hand on scores between
the twig constructor functions.

So the compilation of element construction takes two steps:

• Construct a twig covering as much constructors as possible.

• Construct Relational Algebra code that collects input scores and attaches the result score
to the root of the constructed twig.

No scores are assigned to the inner nodes of the twig. The returned twig is represented as a node
surrogate in a singleton item sequence (see Section 4.2.3.1), thus bears only one single score. The

XML fragment constructed by the twig is in the fragment storage, and PathfinderFT does not
assign scores to XML nodes there.

Thus, descending into a constructed twig “rearranges” the scores:

for $i score $s

in <a>{ <x/> scored 0.3

, <y/> scored 0.7

}</a>/*

return ($i, $s)

returns (<x/>, 0.5, <y/>, 0.5) if the average of the content scores is used as the score of the
twig. The axis step then propagates the accumulated score at the twig’s root down to its result
nodes (which does not necessarily distribute the scores evenly, see Section 5.8).

The twig construction is almost directly mapped to Relational Algebra primitives, the remaining
task for Pathfinder

FT
is to collect the scores at all entry points of the twig, and to pass them

on to the twig result via some score propagation functions:

q
twigElem e [t1, ..., tn]

y∗
Γ,L

=
(
elemiter

item
e′ [t′1, ..., t

′
n] , smElem L e′ (s1 ] ... ] sn)

)
The node name construction is compiled using the normal scheme

e′ =
q
e
y

Γ,L

returning an item sequence using the usual encoding.

The twigs that form the content are compiled using the extended scheme, yielding twig/score
pairs

(t′i, si) =
q
ti

y∗
Γ,L

The scores s1, ..., sn returned from compiling the content twigs are handed on to the score propa-
gation function smElem together with the score returned from compiling the XQuery Core code
for the element name. The score of the constructed twig can thus depend on the score of the
element name as well:
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for $i score $s

in element { "a" scored 0.3 } { 42 scored 0.7 }

return ($i, $s)

returns (<a>42</a>, 0.21), if the result score is the product of the element name score and the
element content score.

An implementation of smElem that multiplies the element name score with the average of the
content scores is given next. The average of the empty content cannot be calculated, which is
why the default score is used here.

smElem L e′ c = πiter
score:score2

/ opscore2:
score·score1

/ (a ] s) on
iter=iter1

πiter1:iter
score1:score

e′

where

a = smDefault / L \πiter c
s = aggscore:

avg score
/iter

c

The calculation of a delivers the content scores for those iterations where the content is empty,
i.e., whenever an iteration is mentioned in the loop relation, but not in the table c of content
scores. s contains the aggregate scores of non-empty contents.

The constructor function for content is also translated using
q
·
y∗

Γ,L
:

q
twigContent c

y∗
Γ,L

=

contiter
pos
item

c′ , smContent c′


where

c′ =
q
c
y

Γ,L

smContent s = aggscore:
avg score
/iter

s

This calculates the average of all content scores. Empty contents yield missing iterations in the
returned relation, which is accounted for when calculating a in smElem.

The truth, however, is a bit more complicated than what is described here: The XPath data
model, and hence XQuery Full Text, does not allow empty text nodes, nor consecutive text
nodes amongst a node’s children4, which requires text nodes following each other to be joined.
At the time of writing, and in contrast to the Pathfinder compiler that correctly implements
this, PathfinderFT still offers only an approximation of the desired behaviour.

5.20 Using Documents

When using a document from the database, it may make sense to propagate the score of the
document name to the document root, as in the next query.

for $c score $s

in for $url

in doc("list.xml")/entry[./abstract contains text "Burkina"]/url

4http://www.w3.org/TR/xpath-datamodel/#Node

http://www.w3.org/TR/xpath-datamodel/#Node
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return doc($url)//chapter[. contains text "Ouagadougou"]

order by $s descending

return $c/title

Multiple documents are used here, and the relevance of a result item depends on more than one
of them: One document, "list.xml", contains a list of abstracts and URLs. The abstracts are
searched for the term "Burkina", which creates a score that is propagated to the URL node of
the entry.

The identified documents are then searched for chapters containing "Ouagadougou", which cre-
ates another score. To implicitly combine both scores, the function doc() must offer score
propagation from its argument to the returned document.

This is achieved by simply passing the input score around the Relational Algebra doc operator.
Since the Pathfinder compiler handles document access as a constructor, the compilation
scheme

q
·
y∗

Γ,L
is used again.

q
doc( e )

y∗
Γ,L

=
(
docitem:item1 (πiter

item1:item
e′) , πiter

score
e′
)

where

e′ =
q
e
y

Γ,L

5.21 Calling the Full Text machine

The contains text operator is the connective link between the database query language XQuery
and the information retrieval language defined in the XQuery Full Text draft.

Fed with a search context expressed by an XQuery expression, and a search specification ex-
pressed by a Full Text expression, it returns a scored Boolean item in the XQuery Full Text
domain, i.e., in the XQuery domain enriched with scored items. XQuery Full Text’s Ig-
nore Option5 is currently unsupported. PathfinderFT would consider this part of the search
specification.

One prevalent design goal of PathfinderFT is to be independent of the scoring model and the
Full Text machinery used to calculate scores. The required adaptations to fit in a Full Text
engine culminate in the compilation strategy for the contains text operator, and different
design choices can be made here, depending on the abilities of the Full Text engine, its preferred
intermediate language, and the available operators in the Relational Algebra:

• The contains text operator, and the Full Text expression specifying the search may be
compiled to specially crafted Relational Algebra primitives (Section 5.21.1).

• The contains text operator can be compiled to a Relational Algebra function call (Sec-
tion 5.21.2).

• The Full Text expression may be compiled to an XML- (Section 5.22.1) or string- (Sec-
tion 5.22.2) representation, which can be handled with existing Pathfinder means.

5http://www.w3.org/TR/xquery-full-text/#ftignoreoption

http://www.w3.org/TR/xquery-full-text/#ftignoreoption
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• The Full Text expression tree can be decomposed into multiple Full Text expressions with
their own calls to contains text, by pushing Full Text operators towards the root of the
query expression tree, past the initial contains text operator (Section 5.22.4).

5.21.1 Purely algebraic

The purely algebraic approach would compile the contains text operator and the Full Text
operators to special relational algebra primitives. Given that the Pathfinder compiler could be
extended with the required knowledge, it would be able to perform cross-language optimisations.

This, however comes at a high cost: For each Full Text operator a Relational Algebra counter-
part would have to be implemented. Additionally, the Pathfinder compiler’s carefully crafted
optimisations would have to be extended to deal with the new operators. Equivalence laws on
the extended algebra would have to be described, proven, and implemented in the Pathfinder
compiler’s optimiser. Finally, the Pathfinder compiler, would be burdened with mapping the
new operators to adequate physical operators in the RDBMS, i.e., the level where score prop-
agation is implemented would be one step closer to the database core, which contradicts the
approach taken by this work.

Hence, the result would not be a minimally invasive extension of the Pathfinder compiler, but
a complete rewrite to make it a Full Text engine instead.

5.21.2 Relational Algebra function call

The current implementation of PathfinderFT maps the contains text operator to a function
call at the Relational Algebra level.

Function calls are provided by the Relational Algebra operator fun, which is parametrised with
the name of the function to call, and consumes a loop relation and a list of arguments. The latter
have to be provided in an iter,pos,item encoding, i.e., scores cannot be passed to a Relational
Algebra function. The returned relation, however, may carry additional columns:

funname :: Reliter → [Reliter
pos
item

]→ Reliter
pos
item
...

The loop relation is required to determine the empty sequences in the arguments, see Sec-
tion 4.2.3.

The Pathfinder
FT

compiler makes use of the Relational Algebra function pftijah, which is
the interface provided by PF/Tijah. This function takes two arguments, the former being an
encoded XQuery item sequence that represents the search context, the latter being an XQuery
string.

The semantics of the second argument varies: If the first character of the string is a percent
character (%), the remainder is considered a NEXI query that is interpreted completely inside
the PF/Tijah system. Otherwise, the string is interpreted as a space-separated list of search
terms.

To be more flexible when playing with the concrete implementation, the contains text operator
is mapped to an XQuery Core function call in a first step, instead of extending the XQuery
Core language with a new keyword.
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Thus, at XQuery Core level, the expression will contain one or more occurrences of the function6

call pftijah(c, t), which is then compiled to Relational Algebra in another step. In the simplest
case, on would translate the XQuery query

e1 contains text e2

into the XQuery Core expression

pftijah(e′1, e′2)

with suitable translations e′i. This works fine if the second argument e2 is a single literal search
term. For more complex cases, however, a more sophisticated translation scheme is needed.
Some strategies are described in Section 5.22.

Score Propagation Since the search context may carry non-default scores, it might make sense
to adjust the scores returned from a contains text depending on the scores of its arguments.
Consider

doc("books.xml")

[./title contains text "something"]

[./author contains text "John"]

where two consecutive filters are applied on a collection of books. The user may expect the
scores of the result to reflect the outcome of both Full Text operations. One might even require
equivalence with

doc("books.xml")

[ ./title contains text "something"

and

./author contains text "John"

]

to hold. But this is, again, subject to the design of the score propagation functions.

A user might argue that the score of the search terms must be considered as well, a simple
consequence of XQuery Full Text’s orthogonality:

doc("books.xml")

[ ./title

contains text

{ $termcollection[./group contains text "nonsense"]/terms }

]

In the above query, the search terms are determined by a Full Text search on a collection of
search terms in $termcollection.

6No namespace prefix is used for the function pftijah: The function name is introduced on XQuery to
XQuery Core translation, and removed on XQuery Core to Relational Algebra translation. Hence, outside

of the Pathfinder
FT

implementation the function’s name is invisible, and, thus, in fact arbitrary. It can be
considered outside of any namespace.



67

Compilation Score propagation for the contains text operator is accounted for when com-
piling the XQuery Core function pftijah to Relational Algebra:

q
pftijah(e1,e2)

y
Γ,L

= smContainsText L e′1 e
′
2 / funpftijah L [πiter

pos
item

e′1, πiter
pos
item

e′2]

where

e′i =
q
ei

y
Γ,L

smContainsText L c t r = πiter
pos
item
score:score2

/ opscore2:
score·score1

/ (s ] a) on
iter1=iter

πiter1:iter
pos
item
score1:score

r

a = smDefault / L \πiter c
s = aggscore:

avg score
/iter

c

This implementation of smContainsText ignores scores from the search terms t, and multiplies
the scores returned from the Full Text engine with the average score s of the search context items
in c. For the empty search context, a provides the default score.

* * *

Up to this point, the focus was on how to call the Full Text machinery, and how to propagate
scores across this call. The remainder of this section is about what is passed to the Full Text
machinery.

5.22 Compiling Full Text expressions

If the purely algebraic approach was taken, see Section 5.21.1, there would not be much to
worry about here: The Full Text expression has already been translated to some Relational
Algebra expression that could readily be optimised by the Pathfinder compiler, and executed
by MonetDB.

As described in Section 5.21.2 however, a function call is used whose second parameter represents
the Full Text expression. To this end, it is required to compile the Full Text expression into
something that is in the XQuery Core domain, and is understood by the Full Text machine
interface, namely the pftijah function.

This task can be approached from two different angles:

1. The direct approach, presented in the following sections, is to translate the Full Text lan-
guage introduced by XQuery Full Text to the Full Text language understood by the Full
Text engine. For this to work precisely, it is required that the former represents a semantic
subset of the latter. In the real world, one should be happy if not too much frictional loss
occurs: A sloppy handling may be acceptable, since the Full Text semantics are somewhat
fuzzy anyway. Another obstacle is the orthogonal nature of XQuery Full Text, which
may require a loop-back opportunity in the target language to hook in expressions from
the XQuery domain, see Section 5.22.3.

2. The unfolding approach, Section 5.22.4, tries to unfold Full Text expressions occurring on
the right hand side of the contains text operator to valid XQuery Core expressions while
retaining semantics. Defining semantic equivalence, however, is difficult for languages that
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lack a definition of semantics. A more serious problem is that some Full Text expressions
simply cannot be represented in XQuery Core, see Section 5.22.6.

3. A combination of both approaches, i.e., unfolding exactly those XQuery Full Text
constructs that cannot be expressed in the target Full Text language, gains the advantages
of both, but also their difficulties: Again, orthogonality allows an unfoldable construct to
occur below a directly usable construct, and unfolding past the upper expression might
prove difficult, see Section 5.22.5.

5.22.1 The direct approach via XML

Without adding extensions crafted towards XQuery Full Text, the XQuery Core domain
offers only two structures that seem suitable for representing an expression in the Full Text target
language: A plain string, or an XML fragment.

A common drawback of both of them is that the actual representation of the Full Text expression
is calculated at runtime. As a consequence, static errors in the Full Text target language may
appear as runtime errors of the generating XQuery Full Text query. Also, the representa-
tion is opaque to the compiler, which deprives the compiler of optimisation opportunities: The
Pathfinder compiler will handle the Full Text representation as ordinary data. Furthermore,
performance issues arise, which are discussed later on in Section 5.22.3.

Another drawback is that the Full Text representation has to be parsed by the Full Text engine
each time the interface function is called. I.e., the Full Text expression parsed by PathfinderFT

is compiled into something that is later parsed again, potentially repeatedly, by the Full Text
engine.

Using XML fragments is an approximation of adding special operators (see Section 5.21.1),
and can be carried through to the Relational Algebra plan: Instead of adding operators to the
Relational Algebra vocabulary that represent Full Text operators, a twig is constructed that
represents the Full Text expression. The element names are drawn from a distinct namespace.

An advantage of this approach is that the structure of the Full Text expression becomes visible
in the Relational Algebra plan, where it appears as a series of twigs. Thus, a later compilation
phase may be able to apply rewrites to the generated structure, if it is able to recognise those
twigs that represent Full Text expressions. This can be done via a dedicated namespace.

Another advantage is that it is rather easy to embed XQuery expressions in the Full Text
expression, and to express this in the Relational Algebra plan: There XQuery expression simply
appears as the content construction of a suitable element node.

declare namespace wns = "http://www.mediawiki.org/xml/export-0.4/";

declare namespace pfft = "http://stefan-klinger.de/ns/pfft/0.1";

(# pfft:ftComp toXml #) {

for $i score $s

in doc("enwikiquote.xml")//wns:page

[ .//wns:text contains text

"technology" ftand "magic" ftand "indistinguishable" ]

order by $s descending

return $i/wns:title

}
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The plan generated from this query is shown in Figure 3 on page 82. The shown pragma triggers
the compilation of Full Text expressions into twigs. The twig generated from the Full Text
expression "technology" ftand "magic" ftand "indistinguishable" appears as a group of
green nodes in the plan, zoomed in on at the right hand side of the figure.

The bright green nodes are the node constructors, the topmost of which represents the ftand op-
eration. This can be seen from its left descendants, which construct the element name pfft:and.

The text node constructors at the very bottom refer to the three search terms "technology",
"magic", and "indistinguishable". Since these are XQuery string literals (or the result
of some other XQuery calculation), they are simply hooked into the Full Text expression via
pfft:embed element nodes, which make up the middle row of constructors.

Of course, the XQuery Core function used to interface the Full Text engine is required to
understand the passed XML fragments, and pftijah, unfortunately, lacks this ability.

Hence, although PathfinderFT can generate such plans, they are of no use, since there is cur-
rently no system available that could evaluate them, nor benefit from the described advantages.

5.22.2 The direct approach via NEXI

The pftijah function accepts the search specified in NEXI, passed as a string argument prefixed
with a percent character (%). To this end, the Full Text expression given in the XQuery Full
Text query needs to be compiled into a NEXI expression.

This is an easy task, if the Full Text expression is constant, i.e., if it does not require any
calculations in the XQuery domain to be performed at run time. In that case, the NEXI
query can be calculated completely at compile time, i.e., by Pathfinder

FT
when generating the

Relational Algebra plan.

declare namespace wns = "http://www.mediawiki.org/xml/export-0.4/";

declare namespace pfft = "http://stefan-klinger.de/ns/pfft/0.1";

(# pfft:ftComp toNexi #) {

for $i score $s

in doc("enwikiquote.xml")//wns:page

[ .//wns:text

contains text

"technology" ftand "magic" ftand "indistinguishable"

]

order by $s descending

return $i/wns:title

}

The same query as in Section 5.22.1, however compiling the Full Text expression to a NEXI
string as directed by the pragma, yields the plan shown in Figure 4 on page 84. The bigger
grey box contains all the text snippets that need to be concatenated to form the final NEXI
query. This concatenation is performed by the fn:string join function, which is part of the
Pathfinder compiler’s Relational Algebra.
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Note that the compiled NEXI query

.[(about(.,technology) and about(.,magic)

and about(.,indistinguishable))]

is constant, i.e., no computation (set aside string concatenation) is required to determine its
contents.

The PF/Tijah system is able to work in a loop-lifted fashion in this situation, which leads to
internally running one NEXI query on the loop-lifted representation of all node sets returned
from the axis steps at once. Executing this plan, and returning the result

<XQueryResult>

<title>Technology</title>

<title>Paranormal</title>

<title>Arthur C. Clarke</title>

<title>December 16</title>

<title>Programming</title>

<title>Creationism and evolution</title>

<title>Creationism and Intelligent Design</title>

</XQueryResult>

from the 164MB document takes about 1.7s.

5.22.3 Variable search terms

This strategy, however, fails badly when the search term is not constant.

declare namespace wns = "http://www.mediawiki.org/xml/export-0.4/";

declare namespace pfft = "http://stefan-klinger.de/ns/pfft/0.1";

(# pfft:ftComp toNexi #) {

for $t

in ("technology", "magic", "indistinguishable")

return for $i score $s

in doc("enwikiquote.xml")

//wns:page[.//wns:text contains text {$t}]

order by $s descending

return $i/wns:title

}

In this query, the search terms are drawn from a list that is iterated over. The compiled Relational
Algebra plan is shown in Figure 5 on page 86, the region zoomed in on depicts the construction
of the NEXI query. The larger grey box on the lower right hand side contains the loop-lifted
search terms.

The problem here is that PF/Tijah cannot optimise in this situation, and runs the NEXI queries
for each of the nodes in the search context repeatedly. The document contains 33316 pages, hence
as many NEXI queries are executed by the PF/Tijah back-end, which takes about 2h26′ on the
same document as above.
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5.22.4 Unfolding Full Text expressions

A completely different approach is to “unfold” the Full Text expression into multiple XQuery
Core expressions. In an extreme case this leads to plans where the Full Text engine is fed solely
with a search context and a single keyword. In other words, by mapping the operators of the
Full Text language to XQuery Core, parts of the score calculation are moved from the Full Text
engine to the Relational Algebra engine.

An advantage of this strategy is that the structure of the complete expression becomes visible to
the Pathfinder compiler, making it subject to potential optimisations.

Pathfinder
FT

currently supports unfolding of Boolean operators and weights, the above exam-
ple query can thus be compiled setting the pfft:ftComp to unfold:

declare namespace wns = "http://www.mediawiki.org/xml/export-0.4/";

declare namespace pfft = "http://stefan-klinger.de/ns/pfft/0.1";

(# pfft:ftComp unfold #) {

for $i score $s

in doc("enwikiquote.xml")//wns:page

[ .//wns:text

contains text

"technology" ftand "magic" ftand "indistinguishable"

]

order by $s descending

return $i/wns:title

}

The plan generated by this query is shown in Figure 6 on page 88. Three areas are highlighted
this time: Interfacing the Full Text engine (bottom), Boolean computation (middle) and score
computation.

The most significant change is that the PF/Tijah engine is called three times, once for each
keyword, but also the score and value calculation are visible in this plan. The pftijah function
calls appear in the wider box at the bottom of the plan: The search context enters the box from
the left, and and is used as first argument of each function calls. The respective keyword appears
as second argument

This plan already underwent Pathfinder’s optimisations, and one of them can be observed
here nicely: The Boolean conjunctions have turned into three select statements, which appear
in the middle of the plan. And the score computation, which was interleaved with the Boolean
computation in the non-optimised plan, has been separated, and pushed towards the top, working
only on those items that passed the Boolean conjunction. For comparison, see the unoptimised
plan in Figure 7 on page 90.
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5.22.4.1 Equivalence

Unfolding, as discussed here, means nothing but replacing a computation in the Full Text domain
with a computation performed in the Relational Algebra engine, no matter whether this unfolding
happens automatically (as described in these sections) or by hand. The obvious question is
whether the user may expect the same result for both variants of a query.

Consider the following two examples:

$canteen[./food contains text "cheap"

ftand "tasty"

]

$canteen[ ./food contains text "cheap"

and ./food contains text "tasty"

]

While I would clearly prefer to consider them equivalent, one might also argue the converse:
“I want the food to be cheap, and tasty.” has a different meaning than “I want the food to be
cheap, and I want the food to be tasty.”, where repetition is used to emphasise the conjunction.
Similarly, the and might implement a somewhat more strict version of conjunction than the
concept used by the Full Text engine. In other words, to implement such behaviour, a different
implementation of score propagation needs to be employed for the and operator, than what the
Full Text engine uses for ftand.

This can be done, but the user needs to be aware of the fact that unfolding a query changes its
semantics. Hence, there is no guarantee that unfolding leaves the semantics untouched. If this is
desired, though, the score propagation functions (see Section 5.23) have to be tailored to match
the Full Text engine used.

5.22.4.2 Unfolding Booleans

It is a little bit incorrect to speak of the Full Text operators ftand, ftor, and ftnot as “Boolean
operators”: Although the intended semantics is of course “Boolean” in nature, they do not
operate on Booleans (nor scored Booleans). A more precise perception is to see them as search
term combiners, i.e., as function combiners for binary functions, the input of which is the search
term (a string) and the search context (an item sequence).

To this end, the unfolding scheme
q
·
yuf

c
requires to pass the search context c down to the individual

search terms ti. This, however, would introduce multiple copies of the query term c. To avoid
the side-effect of node construction to appear several times, a let-clause is used, binding a fresh
variable to the search context. This variable is passed on instead of the search context expression.

Let q be Full Text expression containing only “Boolean” operators (arbitrarily nested) and search
terms ti. Then the XQuery Full Text expression

c contains text q

is translated to

let $c := c′ return
q
q
yuf

$c
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with a fresh variable $c and an XQuery Core representation c′ of c. The unfolding schemeq
q
yuf

$c
, (i.e., unfold q with context variable $c) is defined by the following set of equations:

q
e1 ftand e2

yuf

$c
=

q
e1

yuf

$c
and

q
e2

yuf

$cq
e1 ftor e2

yuf

$c
=

q
e1

yuf

$c
or

q
e2

yuf

$cq
ftnot e

yuf

$c
= not

q
e
yuf

$cq
ti

yuf

$c
= pftijah($c, ti) , if ti is a search term

The result of such unfolding can be observed in the unoptimised plan given in Figure 7 on
page 90, where the relations returned from the three calls to the Full Text engine are combined
using the appropriate operations to calculate the final value and score.

* * *

Although the Relational Algebra plan (Figure 6 on page 88) of the unfold query invokes the Full
Text engine multiple times, this approach seems to benefit from Pathfinder’s optimisations:
A speedup of 25% can be observed7 when comparing the unfold version with the version that
uses NEXI as intermediate language (Figure 4 on page 84). On the other hand, the latter may
as well suffer from the overhead due to generating and parsing the NEXI query string.

5.22.4.3 Unfolding weights

Another operation for which unfolding is implemented in PathfinderFT is the weighting of Full
Text expressions. According to the XQuery Full Text draft, “the effect of weights on the
resulting score is implementation-dependent”8. The constraints actually imposed by the draft
are chosen in such a ridiculously whimsy manner, that it is totally unclear what the intention
of the designers was. E.g., although its semantics is unclear, a weight must be in the range
[−1000.0..1000.0], otherwise an error has to be raised9.

The unfolding of weights is achieved by extending the unfolding scheme
q
·
yuf

$c
, introduced in

Section 5.22.4.2, with one more rule:

q
e weight {w}

yuf

$c
= smWeight w

q
e
yuf

$c

This introduces the function smWeight, which needs to be provided by the scoring model.

An implementation that simply scales the score by the weight is implemented by

smWeight w e′ = for $i score $s in e′ return $i scored ($s * w)

making use of the non-standard operator scored, introduced in Section 5.9, allowing a simple
map on the score-part of the items in e′. Of course, $i, and $s are fresh variables again.

7Test was: Seeding MonetDB/Pathfinder’s cache with a run of the query; then timing 100 consecutive runs
of the same query. This does not claim to be a full-fledged performance test.

8http://www.w3.org/TR/xquery-full-text/#section-using-weights
9http://www.w3.org/TR/xquery-full-text/#ftweight

http://www.w3.org/TR/xquery-full-text/#section-using-weights
http://www.w3.org/TR/xquery-full-text/#ftweight
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5.22.4.4 Weight borrow

At this point I would like to point out an issue hinted at previously: By unfolding, a Full
Text expression is mapped to an XQuery Core expression, which is very likely to have slightly
different semantics (Section 2.1). One particularly nasty pitfall is the potential interference of
weighting and Boolean operators.

When using a score propagation for Booleans (Section 5.10) that multiplies the scores of the
arguments for an operator, say and, together with unfolding and smWeight as described in the
previous section, then the weight carries over to the neighbouring terms.

Consider the following XQuery Full Text expression, where a weight is applied on the term
"technology":

.//wns:text contains text "technology" weight {0.3} ftand "magic"

By unfolding, this is first transformed as follows, where $c = .//wns:text:

q
"technology" weight {0.3} ftand "magic"

yuf

$c= q
"technology" weight {0.3}

yuf

$c
and

q
"magic"

yuf

$c=
(smWeight 0.3

q
"technology"

yuf

$c
) and

q
"magic"

yuf

$c=
(smWeight 0.3 pftijah($c,"technology")) and pftijah($c,"magic")

Now, assuming that pftijah($c,"technology") and pftijah($c,"magic") return the items
〈vtech|stech〉 and 〈vmagic|smagic〉 respectively, the overall result is computed as follows:

(smWeight 0.3 〈vtech|stech〉) and 〈vmagic|smagic〉
=
〈vtech|stech · 0.3〉 and 〈vmagic|smagic〉

=
〈vtech∧vmagic|stech · 0.3 · smagic〉

Following the very same argumentation for the similar Full Text expression

.//wns:text contains text "technology" ftand "magic" weight {0.3}

which only differs from the one above by weighting the other term, leads to the computation

〈vtech∧vmagic|stech · smagic · 0.3〉

which is, of course, the same.

Note that the weight carries over to the other search term, due to a change in associativity of
the operators in different domains: XQuery Full Text’s associative weight operator on one
side, and multiplication in the domain of XQuery arithmetics on the other.

This can be fixed by using a non-associative operator for Boolean score propagation, as provided
when setting the pragma pfft:ftBool to extreme (Section 5.10). Then the respective results
of the given expressions are

〈vtech∧vmagic|min (stech · 0.3) smagic〉 vs. 〈vtech∧vmagic|min stech (smagic · 0.3)〉

depending on which term is weighted.
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5.22.5 Variable search terms, again

Unfortunately, unfolding does not solve the performance problem observed with variable search
terms in Section 5.22.3.

declare namespace wns = "http://www.mediawiki.org/xml/export-0.4/";

declare namespace pfft = "http://stefan-klinger.de/ns/pfft/0.1";

(# pfft:ftComp unfold #) {

for $t

in ("technology", "dupery", "legerdemain")

return for $i score $s

in doc("enwikiquote.xml")//wns:page

[ .//wns:text

contains text

{$t} ftand "magic" ftand "indistinguishable" ]

order by $s descending

return $i/wns:title

}

Although the plan (Figure 8 on page 92) generated for this query looks cleaner than the one shown
in Figure 5 on page 86, the runtime is about the same. This indicates that string concatenation
is not the runtime killer, as previously guessed.

5.22.6 The limits of unfolding

Just as some Full Text expressions may not be expressible in language understood by the Full
Text engine, there are also Full Text expressions that cannot be handled by unfolding. This is
the case for all situations, where the information required to perform a Full Text operation is
not returned by the pftijah function to the XQuery Core domain. These are, e.g., distance
and context information:

XQuery Full Text offers the not in operator, providing a mild-not selection10. The ubiqui-
tous use case for this is

.../city[./name contains text "York" not in "New York"]

expressing a search for cities whose name contains an occurrence of "York" that is not directly
preceded by "New". An unfold query had to validate this constraint for each result matching
"York". Since —in the described architecture— no context information of the retrieved matches
is provided, PathfinderFT is unable to do this.

The same problem turns up when distances are involved. Typical queries are

.//text contains text "technology" ftand "magic"

distance at most 2 words

using distance based on word counts, or

10http://www.w3.org/TR/xquery-full-text/#sec-ftmildnot

http://www.w3.org/TR/xquery-full-text/#sec-ftmildnot
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.//text contains text "technology" ftand "magic" same sentence

using a notion of distance based on scopes.

An approach to solve this issue is to extend the iter|pos|item|score schema with further attributes
to describe, e.g., token positions, and many Full Text engines ([7, 15, 8]) readily provide token
position information. To extend Pathfinder’s item sequence encoding with positional infor-
mation, a set-valued (or, at least, list-valued) approach is required: Since a token may occur at
different positions below an XML node, a match returned from the Full Text engine may carry
any number of positions.

Clearly, since we want to stay in the world of atomic-valued attributes, a list-valued attribute
(i.e., tok :: [Int]) is not an option11. Also, it is desirable to leave the schema fixed, i.e., not to
add attributes tok1, tok2, ..., tokn for n token positions (this has been done in [5]).

Following the Pathfinder design, the way to go is to multiply each item with its positions.
This would also allow to annotate each position with a different score.

Consider the next example document, with node ids annotated as superscript, and a running
token enumeration shown as subscript. Like γ for node surrogates, we shall use τ with a subscript
to identify tokens.

<doc>0

<a>1 magician0 magic1 technician2 theurgist3
2</a>

<a>3 lawyer4 technologist5 magician6 broker7 Rincewind8
4</a>

</doc>

Running the query

doc(...)//a[. contains text "magician"]

will invoke the Full Text engine with two search contexts (γ1, γ3) inside a loop that represents the
predicate expression (Section 5.16). Let’s look inside this loop: The search context is represented
(assuming µ = 1.0) as

lifted context =
iter pos item score
1 1 γ1 1.0
2 1 γ3 1.0

Using a thesaurus, this is what the Full Text engine may calculate

scoring result =

iter pos item score tok
1 1 true 1 τ0
1 1 true 0.5 τ3
2 1 true 1 τ6

indicating, that there are full matches (i.e., score = 1) at τ0, τ6, and a partial match at τ3
(score = 0.5, because it required a dictionary lookup).

Several difficulties arise here. First of all, I was cheating with the orthogonality: The input
relation did not have a tok attribute, but the output relation has. To regain orthogonality, it
is required to add the tok attribute to all relations representing item sequences. A null value

11For demonstration I talk about lists here, and in the following, assuming ordering by the order of tokens.
Talking about sets is probably more correct.
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could be used here. This issue can be mitigated by arguing that token positions are not relevant
all the time, but only below the distance constraints created by certain unfolding operations.
However, it will prove necessary to extend the core language with certain new primitives below,
which in turn would require token positions on some of their arguments. Having two kinds of
item sequence encodings aggravates composition of expressions, and requires to reason about
schemas, i.e., something like a type system, distinguishing the two kinds, would be required. On
the other hand, token positions is a valuable information, and passing them to the root of the
query expression allows to direct the user to relevant results more precisely (think about the text
snippets presented by a search engine, with the matches highlighted).

A minor effect of orthogonality is that even string literals occurring in the query need to be
enumerated, because the contains text operator may very well be applied to a literal (see
Section 2.2.2.3), or a constructed fragment. Just for the argument, assume the token enumeration
to span the query as well.

Also, the scores still need aggregation: The result, after score propagation to the nodes, aggre-
gation and back-mapping (see Section 4.2.3) could be

query result =

iter pos item score tok
1 1 γ1 0.75 τ0
1 1 γ1 0.75 τ3
1 2 γ3 1 τ6

by simply calculating the averages of the scores, grouped by iteration and item, and then listing
all tokens from the same group with the same score, now matter how much it contributed.

Not only does this loose information (which token is relevant?), looking at the document again,
this seems unlikely to be the desired result, because it does not relate the number of matching
tokens to the number of failing ones.

One might consider the following to be more precise:

query result′ =

iter pos item score tok
1 1 γ1 0.25 τ0
1 1 γ1 0.125 τ3
1 2 γ3 0.2 τ6

Which, of course, could have been calculated by the Full Text engine directly. But with the
unfolding perspective, we want to move calculation from the Full Text engine to the Relational
Algebra engine. Alternatively, the Full Text engine might thus have included the failing tokens
as well:

scoring result′ =

iter pos item score tok
1 1 true 1 τ0
1 1 false 0 τ1
1 1 false 0 τ2
1 1 true 0.5 τ3
2 1 false 0 τ4
2 1 false 0 τ5
2 1 true 1 τ6
2 1 false 0 τ7
2 1 false 0.1 τ8

This contains a score for every single token, and it requires aggregation not only on the scores,
but also (and more important) on the items, which is further discussed in Section 7.2.
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Assuming that this particular Full Text engine trusts Rincewind to do only insignificant magic
(i.e., item = false, although score > 0 for τ8 in the very last tuple) makes the required aggregation
difficult: Just averaging the scores yields 0.22 instead of 0.2 for γ3 in query result′ above. But
prior selection on the item attribute will just generate the query result we have already deemed
phony.

One could simply divide the score by the number of tokens (count grouped by (ier, pos)), and
then drop the false items. This returns the result as expected above, but comes with a loss of
information. The question remains what role the failed tokens should play whan calculating the
overall score and token list.

5.22.6.1 The need for null

A potential solution is to add a notion of scores that are not related to any (successful) token,
i.e., the aggregate of false items could be stored with a null token:

query result′′ =

iter pos item score tok
1 1 γ1 0.25 τ0
1 1 γ1 0.125 τ3
1 2 γ3 0.2 τ6
1 2 γ3 0.02 null

This, by the way, represents the XQuery item sequence

( <a>magician magic technician theurgist </a>

, <a>lawyer technologist magician broker Rincewind</a>

)

with some attached information: Both items know which token caused them to gain which score,
the first comes with [(0.25, τ0), (0.125, τ3)], the second one with [(0.2, τ6), (0.02, null)].

This was the second opportunity where the need for a null value in the database back-end arose,
both triggered only by adding token positions to the sequence encoding (elsewhere in this thesis,
null values are not required).

The third occasion is by negation: Negation is successful when its argument fails. So if there
are no matching tokens, a high score is expected. But unlike the representation of an empty
item sequence (which simply omits tuples with an iter value mentioned in the loop relation, see
Section 4.2.3) it is required to pass some information, namely the score. As above, a simple
approach is to use one entry with the null token to account for scores that cannot be traced back
to a token. Of course this mixes the tokens matched by negation with those that failed, as τ8
above. An approach to solve this is sketched in Section 7.3.

5.22.6.2 Making use of token positions

With all this work, we have introduced new problems: Recall that the need for passing token
information arose from unfolding an XQuery Full Text expression into an XQuery Core
expression hosting multiple Full Text expressions. Unfortunately, neither XQuery, nor XQuery
Core provide means to deal with token positions. For scores, there is a score keyword, but there
is nothing similar for token positions. In other words, the token positions are not accessible
outside Full Text expressions. It is thus required to add special functions or keywords to the
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language, which receive special treatment by the compiler: It must be aware of the fact that
some language forms request calculations on the token positions.

Let’s have a brief look at what these new primitives could be. Examine the following XQuery
Full Text predicate:

$x[. contains text "foo" ftand "bar" distance at most 1 word]

The naive unfolding approach is to deal with the Boolean first, and check the distances later, by
using a function distMax which takes a maximum distance —constructed by a “unit” function—
as first argument:

distMax(words(1),$x contains text "foo" and $x contains text "bar")

This, however, doesnot work, which becomes clear when looking at the results of the two Full
Text expressions, which might be something like the following:

$x contains text "foo" =
iter pos item score tok
1 1 true 0.1 τ1
1 1 true 0.2 τ2

$x contains text "bar" =
iter pos item score tok
1 1 true 0.3 τ3
1 1 true 0.4 τ4

Now the distance attribute we have chosen above (at most 1 word) requires a certain pairing
of the tokens: (τ1, τ3), (τ2, τ3), (τ2, τ4). But the and operator does not know that it is used inside
a function constraining distances12, and hence cannot perform this pairing. It will produce
something like

lhs. and rhs. =

iter pos item score tok
1 1 true 0.1 τ1
1 1 true 0.2 τ2
1 1 true 0.3 τ3
1 1 true 0.4 τ4

maybe with different scores. For the same reason, the function distMax must not make assump-
tions about the origin of its argument, hence it will add the (invalid) pairs (τ1, τ2), (τ3, τ4) to the
pairings determined above.

What is required to solve this issue, is a means to relate the tokens to each other, i.e. to
annotate the tuples in the relation with information about which of them come from the same
subexpression. This would require to add another attribute to the relation.

Alternatively, one may consider the text “distance at most 1 word” a modifier on the ftand

operator. Then, unfolding would look like this:

andWithDistMax( words(1)

, $x contains text "foo"

, $x contains text "bar"

)

12It must not know due to orthogonality. And telling it means to use another operator, which happens in the
next paragraph.
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This demonstrates that, in general, it is not possible to just aggregate token positions across an
operator. Here it was required to supplement the and operator with a special andWithDistMax
function which requires special treatment by the compiler, i.e., it must be a primitive. But still,
information about how these tokens relate to each other is missing.

To retain orthogonality in the XQuery part of the language, it is necessary to make the same
consideration for every XQuery operator. Basically, adding a tok column requires to replicate
the efforts undertaken to add the score column, i.e., rethink every compilation rule. Let alone the
difficulties introduced by rewriting the queries to seemingly equivalent ones, the added difficulty
in comparison to scores is that it appears less obvious what propagation functions to choose.

* * *

The conclusion to draw from this section is that attaching just another column replicates and
amplifies the trouble introduced by adding the score column: An extension to the core language is
required (aka. the score keyword), the database should support null values, the relation between
token positions still cannot be expressed, and the exact mechanics of token position propagation
needs to be determined.

Section 7.3 sketches an approach to overcome this issue by encapsulating more information in a
value of some Score type.

5.23 Scoring model parameters

This section summarises the scoring model parameters available for tweaking in the current
implementation of the Pathfinder

FT
architecture.

• smDefault attaches the default score µ to all values in an item sequence. Used, among
others, for literals (Section 5.3), the creation of positions (Section 5.7), or when a score
becomes a value, and needs a new score attached (Section 5.6).

• smLet aggregates the scores of an item sequence to form the item to be bound to a variable
by the score keyword in a let-clause. Section 5.6.

• smStep aggregates the scores of all those context nodes that led to the same result node
when an axis step is performed. Section 5.8.

• smAnd, smOr, and smNot provide score propagation across Boolean operators.

• smFun propagates the scores from the arguments to the result of a function or operator x.
Used for the operators x ∈ {+,−, ∗, div, mod, lt, le, gt, ge, ne, eq} (Section 5.14).

• smConditional merges the score of the predicate of a conditional expression with the score
of the items returned from respective successful branch. Section 5.11.

• smUnion, and smIntersection combine the scores of elements appearing in both arguments
of a respective operation. Section 5.12.

• smExist and smMiss are used to propagate the scores through the function fn:exists. The
former aggregates scores of existing items, the latter invents a score if no items were passed.
Section 5.13.
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• smElem, and smContent are used for element construction to combine the score returned
from computing the element’s name with the scores returned from computing the content.
Section 5.19.

• smContainsText combines the scores of a Full Text search context with the scores of the
results of the search. Section 5.21.2.

• smWeight is used when weighting expressions are unfold from the Full Text language. It
adjusts the score of an item(sequence) according to a provided weight. Section 5.22.4.3.

So, how to parametrise these functions to implement, say, tf-idf? The short answer is, you cannot
do this: This is not the place to implement tf-idf, nor any other scoring mechanism.

It is important to realise that the above functions implement the calculation of a score for an
expression, depending on the scores of subexpressions. This, however, is something beyond tf-idf,
because it lacks a concept of subexpressions. The scoring model functions implement how the
results of different runs of the Full Text engine shall be combined.

To clarify this, let us assume that there is a Full Text engine implementing something like tf-idf,
e.g., an expression e contains text t could trigger a run of tf-idf to calculate the relevance of
the atomised text contents of e with respect to the term t and the “document collection” of all
nodes in the database. Finally, a Boolean is calculated from the score, which could be done by
checking whether it exceeds a certain threshold.

Basically, tf-idf estimates the relevance of a document according to a term and a collection
of documents, by relating the number of occurrences of the term within the document to
the number of documents from the collection containing that term. Several variants of the
actual formula exist, see [2].

Now consider the following query, containing two separate Full Text expressions:

$list[./y contains text "foo" and ./z contains text "bar"]

What happens here is that the contents of y are rated, and the contents of z are rated separately,
the only connection between the calculations being the document collection used by tf-idf. The
outcome of the conjunction is rather the product of two numbers (or whatever is chosen for
smAnd) than a tf-idf measure, and it shall not be misconceived as such.

So, it is impossible to use tf-idf with Pathfinder
FT

? Not quite, since it is perfectly sane to
multiply numbers. The implementer just has to be aware of the fact that the implementation of
the abstract scoring model functions adds semantics on the outside to what the Full Text engine
does. In other words, a new algorithm is created, which uses tf-idf on a lower level.

The above excuse was that tf-idf has no concept of subexpressions. But the argument also
holds for algorithms that do have such a notion, e.g., the Tijah engine, which understands
NEXI expressions. Here it is especially important to make a decision about whether the queries
discussed in Section 5.22.4.1 are expected to return the same result, or not.
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id: 1
SERIALIZE (item61) order by (pos63)

id: 41
Project (item61, pos63)

id: 42
RANK (pos63:<item81 (desc), pos82, pos83>)

id: 43
Project (item61:item77, item81:item75, pos82:pos76,

pos83:pos78)

id: 44
ROWNUM (pos78:<item77>/pos76)

id: 45
Project (item77, item75, pos76)

id: 46
/|+ child::element(wns:title)(item77:item43)

id: 4
FRAG_UNION

id: 47
Project (pos76, item75, item43)

id: 5
FRAG_UNION

id: 10
FRAGs

id: 48
ROWNUM (pos76:<iter5>)

id: 6
EMPTY_FRAG

id: 7
FRAGs

id: 11
twig (iter5, item11)

id: 8
fn:doc (item2:<item1>)

id: 9
TBL: (item1)

["enwikiquote.xml"]

id: 12
ELEM (iter5, item10)

id: 13
Project (iter5, item10:item68)

id: 21
fcns

id: 14
Attach (item68), val: pfft:and

id: 22
ELEM (iter5, item7)

id: 29
fcns

id: 15
ROWNUM (iter5:<item4>)

id: 16
Project (item4)

id: 17
/|+ child::element(wns:page)(item4:item3)

id: 18
Project (item3:item84)

id: 19
/|+ descendant-or-self::element(*:*)(item84:item2)

id: 20
ROOTS

id: 23
Project (iter5, item7:item69)

id: 25
fcns

id: 30
ELEM (iter5, item7)

id: 35
fcns

id: 24
Attach (item69), val: pfft:embed

id: 26
TEXT (iter5, item9)

id: 27
Project (iter5, item9:item70)

id: 28
Attach (item70), val: "technology"

id: 31
fcns

id: 36
ELEM (iter5, item7)

id: 32
TEXT (iter5, item8)

id: 33
Project (iter5, item8:item71)

id: 34
Attach (item71), val: "magic"

id: 37
fcns

id: 38
TEXT (iter5, item6)

id: 39
Project (iter5, item6:item72)

id: 40
Attach (item72), val: "indistinguishable"

id: 49
Project (item43, item75, iter5)

id: 50
1:1 fun [multiply] (item75:<item74, iter73>)

id: 51
Project (item43, iter5, item74, iter73)

id: 52
1:1 fun [multiply] (item74:<item20, iter31>)

id: 53
Cross

id: 54
Project (item20)

id: 67
Attach (iter73), val: 1

id: 55
1:1 fun [multiply] (item20:<iter18, iter19>)

id: 68
Project (item43, iter5, iter31)

id: 56
Attach (iter19), val: 1

id: 57
Project (iter18)

AGGR / iter17
iter18 = avg (iter16)

id: 59
Attach (iter17), val: #21

id: 60
UNION

id: 61
Project (iter16:iter15)

id: 66
Project (iter16:item14)

id: 62
UNION

id: 64
1:1 fun [multiply] (item14:<iter12, iter13>)

id: 63
Project (iter15:item14)

id: 65
TBL: (iter12 | iter13)

[1,1]

id: 69
Join (iter5 = iter38)

id: 70
Project (item30, iter5, iter31)

id: 86
DISTINCT

id: 71
Join (iter5 = iter28)

id: 87
Project (iter38:iter5, item43:item4)

id: 72
ROOTS

id: 73
Tijah function "pftijah_ftfun_b_sxx" (iter28, pos29, item30, iter31)

(loop: iter5)

id: 74
Project (iter5)

id: 75
fun param (iter5, pos27, item26)

id: 76
ROWNUM (pos27:<item26>/iter5)

id: 81
fun param (iter23, pos22, item24)

id: 77
Project (iter5, item26)

id: 82
Project (pos22:pos21, iter23:iter5, item24:item11)

id: 3
nil

id: 78
/|+ child::element(wns:text)(item26:item25)

id: 79
Project (iter5, item25)

id: 80
/|+ descendant-or-self::element(*:*)(item25:item4)

id: 83
Cross

id: 84
Project (pos21)

id: 85
Attach (pos21), val: #1

id: 88
Cross

id: 89
Project (iter37:iter36)

id: 93
DISTINCT

id: 90
DISTINCT

id: 94
Project (iter5, item4)

id: 91
Project (iter36)

id: 92
Attach (iter36), val: #42

id: 95
Select (item30)

id: 96
Project (iter5, item4, item30)

id: 97
Join (iter5 = iter65)

id: 98
Project (item4, iter65:iter5)

Figure 3: The Relational Algebra plan for the example query from Section 5.22.1 shows the twig
representation of Full Text expression. (See enlarged detail in Figure 3a on page 83)
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Figure 3a: (Detail of Figure 3 on page 82)
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id: 1
SERIALIZE (item41) order by (pos43)

id: 9
Project (item41, pos43)

id: 10
RANK (pos43:<item64 (desc), pos65, pos66>)

id: 11
Project (item41:item61, item64:item59, pos65:pos60,

pos66:pos62)

id: 12
ROWNUM (pos62:<item61>/pos60)

id: 13
Project (item61, item59, pos60)

id: 14
/|+ child::element(wns:title)(item61:item6)

id: 4
FRAG_UNION

id: 15
Project (pos60, item59, item6)

id: 5
EMPTY_FRAG

id: 6
FRAGs

id: 16
ROWNUM (pos60:<iter11>)

id: 7
fn:doc (item4:<item3>)

id: 8
TBL: (item3)

["enwikiquote.xml"]

id: 17
Project (item6, item59, iter11)

id: 18
1:1 fun [multiply] (item59:<item58, iter56>)

id: 19
Project (item6, iter11, item58, iter56)

id: 20
1:1 fun [multiply] (item58:<iter57, iter22>)

id: 21
Attach (iter57), val: 1

id: 22
Attach (iter56), val: 1

id: 23
Project (item6, iter11, iter22)

id: 24
Join (iter11 = iter7)

id: 25
Project (item21, iter11, iter22)

id: 49
Project (iter7:iter11, item6)

id: 26
Join (iter11 = iter19)

id: 50
DISTINCT

id: 27
Attach (pos15), val: #1

id: 40
Tijah function "pftijah_ftfun_b_sxx" (iter19, pos20, item21, iter22)

(loop: iter7)

id: 28
fn:string_join

iter11 <iter11, iter7>,
<pos13>,

item12 <item12, item8>

id: 41
Project (iter7)

id: 42
fun param (iter7, pos18, item17)

id: 29
Project (iter11:iter7, item12, pos13)

id: 38
Project (iter7, item8:item47)

id: 30
Cross

id: 39
Attach (item47), val: ""

id: 31
ROWNUM (iter7:<item6>)

id: 37
TBL: (item12 | pos13)

["%.[",#1]
["(",#2]

["about(.,",#3]
["technology",#4]

[")",#5]
[" and ",#6]

["about(.,",#7]
["magic",#8]

[")",#9]
[" and ",#10]

["about(.,",#11]
["indistinguishable",#12]

[")",#13]
[")",#14]
["]",#15]

id: 32
Project (item6)

id: 33
/|+ child::element(wns:page)(item6:item5)

id: 34
Project (item5:item67)

id: 35
/|+ descendant-or-self::element(*:*)(item67:item4)

id: 36
ROOTS

id: 43
ROWNUM (pos18:<item17>/iter7)

id: 48
fun param (iter11, pos15, item12)

id: 44
Project (iter7, item17)

id: 3
nil

id: 45
/|+ child::element(wns:text)(item17:item16)

id: 46
Project (iter7, item16)

id: 47
/|+ descendant-or-self::element(*:*)(item16:item6)

id: 51
Project (iter11, item6)

id: 52
Select (item21)

id: 53
Project (iter11, item6, item21)

id: 54
Join (iter11 = iter7)

Figure 4: The Relational Algebra plan for the example query from Section 5.22.2 shows the NEXI
query generated from the Full Text expression. (See enlarged detail in Figure 4a on page 85)
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Figure 4a: (Detail of Figure 4 on page 84)
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id: 1
SERIALIZE (item140) order by (pos143)

id: 9
Project (item140, pos143)

id: 10
RANK (pos143:<iter193, pos194>)

id: 11
Project (item140:item189, iter193:iter4, pos194:pos191)

id: 12
ROWNUM (pos191:<item186 (desc), iter188, pos190>/iter4)

id: 13
ROWNUM (pos190:<item189>/iter188)

id: 14
Project (item189, iter4, item186, iter188)

id: 15
/|+ child::element(wns:title)(item189:item7)

id: 4
FRAG_UNION

id: 16
Project (iter188, iter4, item186, item7)

id: 5
EMPTY_FRAG

id: 6
FRAGs

id: 17
ROWNUM (iter188:<iter4, pos187>)

id: 7
fn:doc (item5:<item3>)

id: 8
TBL: (item3 | iter4)

["enwikiquote.xml",#1]
["enwikiquote.xml",#2]
["enwikiquote.xml",#3]

id: 18
Project (item7, iter4, item186, pos187)

id: 19
ROWNUM (pos187:<iter105>/iter4)

id: 20
Project (item7, iter4, item186, iter105)

id: 21
1:1 fun [multiply] (item186:<item185, iter183>)

id: 22
Project (item7, iter4, iter105, item185, iter183)

id: 23
1:1 fun [multiply] (item185:<iter184, iter116>)

id: 24
Attach (iter184), val: 1

id: 25
Attach (iter183), val: 1

id: 26
Project (item7, iter4, iter105, iter116)

id: 27
Join (iter105 = iter148)

id: 28
Project (item7, iter116, iter105)

id: 122
Project (iter4, iter148:iter9)

id: 29
Join (iter105 = iter9)

id: 62
ROWNUM (iter9:<iter4, pos8>)

id: 30
Project (item115, iter116, iter105)

id: 116
Project (iter9:iter105, item7)

id: 31
Join (iter105 = iter113)

id: 117
DISTINCT

id: 32
Attach (pos109), val: #1

id: 108
Tijah function "pftijah_ftfun_b_sxx" (iter113, pos114, item115, iter116)

(loop: iter9)

id: 33
fn:string_join

iter105 <iter105, iter9>,
<pos107>,

item104 <item104, item10>

id: 80
Project (iter9)

id: 109
fun param (iter9, pos112, item111)

id: 34
Project (item104, iter105, pos107)

id: 106
Project (iter9, item10:item172)

id: 35
ROWNUM (pos107:<pos106>/iter105)

id: 107
Attach (item172), val: ""

id: 36
UNION

id: 37
Project (item104:item101, iter105:iter102, pos106:pos103)

id: 103
Project (item104:item170, iter105:iter9, pos106:pos171)

id: 38
UNION

id: 104
Attach (pos171), val: #15

id: 39
Project (item101:item98, iter102:iter99, pos103:pos100)

id: 101
Project (item101:item150, iter102:iter9, pos103:pos169)

id: 40
UNION

id: 102
Attach (pos169), val: #14

id: 41
Project (item98:item95, iter99:iter96, pos100:pos97)

id: 99
Project (item98:item150, iter99:iter9, pos100:pos167)

id: 42
UNION

id: 100
Attach (pos167), val: #13

id: 43
Project (item95:item92, iter96:iter93, pos97:pos94)

id: 96
Project (item95:item164, iter96:iter9, pos97:pos165)

id: 44
UNION

id: 97
Attach (pos165), val: #12

id: 45
Project (item92:item89, iter93:iter90, pos94:pos91)

id: 94
Project (item92:item154, iter93:iter9, pos94:pos163)

id: 46
UNION

id: 95
Attach (pos163), val: #11

id: 47
Project (item89:item86, iter90:iter87, pos91:pos88)

id: 92
Project (item89:item152, iter90:iter9, pos91:pos161)

id: 48
UNION

id: 93
Attach (pos161), val: #10

id: 49
Project (item86:item83, iter87:iter84, pos88:pos85)

id: 90
Project (item86:item150, iter87:iter9, pos88:pos159)

id: 50
UNION

id: 91
Attach (pos159), val: #9

id: 51
Project (item83:item80, iter84:iter81, pos85:pos82)

id: 87
Project (item83:item156, iter84:iter9, pos85:pos157)

id: 52
UNION

id: 88
Attach (pos157), val: #8

id: 53
Project (item80:item77, iter81:iter78, pos82:pos79)

id: 84
Project (item80:item154, iter81:iter9, pos82:pos155)

id: 54
UNION

id: 85
Attach (pos155), val: #7

id: 55
Project (item77:item74, iter78:iter75, pos79:pos76)

id: 81
Project (item77:item152, iter78:iter9, pos79:pos153)

id: 56
UNION

id: 82
Attach (pos153), val: #6

id: 57
Project (item74:item71, iter75:iter72, pos76:pos73)

id: 77
Project (item74:item150, iter75:iter9, pos76:pos151)

id: 58
UNION

id: 78
Attach (pos151), val: #5

id: 59
Project (item71:item69, iter72:iter9, pos73:pos70)

id: 72
Project (item71:item61, iter72:iter9, pos73:pos149)

id: 60
Cross

id: 73
Attach (pos149), val: #4

id: 61
Project (iter9, item7, iter4)

id: 71
TBL: (item69 | pos70)

["%.[",#1]
["(",#2]

["about(.,",#3]

id: 63
ROWNUM (pos8:<item7>/iter4)

id: 64
DISTINCT

id: 65
Project (iter4, item7)

id: 66
/|+ child::element(wns:page)(item7:item6)

id: 67
Project (iter4, item6)

id: 68
/|+ descendant-or-self::element(*:*)(item6:item5)

id: 69
Project (iter4, item5)

id: 70
ROOTS

id: 74
Project (item61, iter9)

id: 75
Join (iter4 = iter144)

id: 76
TBL: (item61 | iter144)

["technology",#1]
["dupery",#2]

["legerdemain",#3]

id: 79
Attach (item150), val: ")"

id: 83
Attach (item152), val: " and "

id: 86
Attach (item154), val: "about(.,"

id: 89
Attach (item156), val: "magic"

id: 98
Attach (item164), val: "indistinguishable"

id: 105
Attach (item170), val: "]"

id: 110
ROWNUM (pos112:<item111>/iter9)

id: 115
fun param (iter105, pos109, item104)

id: 111
Project (iter9, item111)

id: 3
nil

id: 112
/|+ child::element(wns:text)(item111:item110)

id: 113
Project (iter9, item110)

id: 114
/|+ descendant-or-self::element(*:*)(item110:item7)

id: 118
Project (iter105, item7)

id: 119
Select (item115)

id: 120
Project (iter105, item7, item115)

id: 121
Join (iter105 = iter9)

Figure 5: The Relational Algebra plan for the example query from Section 5.22.3 shows how the
construction of the NEXI query requires calculations in the Relational Algebra domain. (See enlarged
detail in Figure 5a on page 87)
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Figure 5a: (Detail of Figure 5 on page 86)
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id: 1
SERIALIZE (item110) order by (pos112)

id: 9
Project (item110, pos112)

id: 10
RANK (pos112:<item140 (desc), pos141, pos142>)

id: 11
Project (item110:item137, item140:item135, pos141:pos136,

pos142:pos138)

id: 12
ROWNUM (pos138:<item137>/pos136)

id: 13
Project (item137, item135, pos136)

id: 14
/|+ child::element(wns:title)(item137:item57)

id: 4
FRAG_UNION

id: 15
Project (pos136, item135, item57)

id: 5
EMPTY_FRAG

id: 6
FRAGs

id: 16
ROWNUM (pos136:<iter5>)

id: 7
fn:doc (item2:<item1>)

id: 8
TBL: (item1)

["enwikiquote.xml"]

id: 17
Project (item57, item135, iter5)

id: 18
1:1 fun [multiply] (item135:<iter133, iter134>)

id: 19
Attach (iter134), val: 1

id: 20
Project (item57, iter5, iter133)

id: 21
1:1 fun [multiply] (iter133:<iter131, item132>)

id: 22
Project (item57, iter5, iter131, item132)

id: 23
1:1 fun [multiply] (item132:<iter130, iter17>)

id: 24
Project (item57, iter5, iter131, iter130, iter17)

id: 25
1:1 fun [multiply] (iter131:<item128, item129>)

id: 26
Attach (iter130), val: 1

id: 27
Project (item57, iter5, iter17, item128, item129)

id: 28
1:1 fun [multiply] (item129:<iter126, iter37>)

id: 29
Project (item57, iter5, iter17, item128, iter126,

iter37)

id: 30
1:1 fun [multiply] (item128:<iter127, iter27>)

id: 31
Attach (iter127), val: 1

id: 32
Attach (iter126), val: 1

id: 33
Project (item57, iter5, iter17, iter37, iter27)

id: 34
Join (iter5 = iter119)

id: 35
Project (item26, iter5, iter17, iter37, iter27,

item16, item36)

id: 73
Project (iter119:iter5, item57)

id: 36
Join (iter5 = iter117)

id: 74
DISTINCT

id: 37
Project (item26, iter5, item36, iter37, iter27)

id: 66
Project (iter117:iter5, item16, iter17)

id: 38
Join (iter5 = iter115)

id: 67
Join (iter5 = iter14)

id: 39
Project (iter37, iter5, item36)

id: 59
Project (iter115:iter5, item26, iter27)

id: 40
Join (iter5 = iter34)

id: 60
Join (iter5 = iter24)

id: 41
ROWNUM (iter5:<item4>)

id: 47
Tijah function "pftijah_ftfun_b_sxx" (iter34, pos35, item36, iter37)

(loop: iter5)

id: 42
Project (item4)

id: 48
Project (iter5)

id: 49
fun param (iter5, pos13, item12)

id: 43
/|+ child::element(wns:page)(item4:item3)

id: 44
Project (item3:item143)

id: 45
/|+ descendant-or-self::element(*:*)(item143:item2)

id: 46
ROOTS

id: 50
ROWNUM (pos13:<item12>/iter5)

id: 55
fun param (iter31, pos32, item33)

id: 51
Project (iter5, item12)

id: 56
Project (iter31:iter5, pos32:pos120, item33:item121)

id: 3
nil

id: 52
/|+ child::element(wns:text)(item12:item11)

id: 53
Project (iter5, item11)

id: 54
/|+ descendant-or-self::element(*:*)(item11:item4)

id: 57
Attach (item121), val: "magic"

id: 58
Attach (pos120), val: #1

id: 61
Tijah function "pftijah_ftfun_b_sxx" (iter24, pos25, item26, iter27)

(loop: iter5)

id: 62
fun param (iter5, pos13, item12)

id: 63
fun param (iter21, pos22, item23)

id: 64
Project (iter21:iter5, pos22:pos120, item23:item123)

id: 65
Attach (item123), val: "technology"

id: 68
Tijah function "pftijah_ftfun_b_sxx" (iter14, pos15, item16, iter17)

(loop: iter5)

id: 69
fun param (iter5, pos13, item12)

id: 70
fun param (iter8, pos9, item10)

id: 71
Project (iter8:iter5, pos9:pos120, item10:item125)

id: 72
Attach (item125), val: "indistinguishable"

id: 75
Project (iter5, item57)

id: 76
Select (item16)

id: 77
DISTINCT

id: 78
Project (iter5, item57, item16)

id: 79
Select (item36)

id: 80
DISTINCT

id: 81
Project (iter5, item57, item16, item36)

id: 82
Select (item26)

id: 83
Project (iter5, item57, item16, item36, item26)

id: 84
Join (iter5 = iter118)

id: 85
Project (item57:item4, iter118:iter5)

Figure 6: Unfolding (Section 5.22.4) creates one pftijah function call for each keyword (bottom). The
Boolean operators are optimised to a sequence of selects (middle), the score computation is performed
on the surviving nodes only (top). (See enlarged details in Figure 6a on page 89)
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Figure 6a: (Details of Figure 6 on page 88)
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id: 1
SERIALIZE (item) order by (pos)

id: 13
Project (iter:outer, pos:pos1, item, score1)

id: 14
ROWNUM (pos1:<item1 (desc), inner, pos>/outer)

id: 15
Join (inner = iter)

id: 16
Project (outer, inner, item1:item)

id: 149
Project (iter, pos, item, score1)

id: 17
Join (iter = inner)

id: 150
ROWNUM (pos:<item>/iter)

id: 18
Attach (score1), val: 1

id: 148
Project (outer:iter, inner)

id: 19
Attach (pos), val: #1

id: 22
ROWNUM (inner:<iter, pos>)

id: 20
Project (iter:inner, item)

id: 21
Project (inner, item:score1, iter, pos)

id: 23
Project (iter:outer, pos:pos1, item, score1)

id: 24
ROWNUM (pos1:<inner, pos>/outer)

id: 25
Join (inner = iter)

id: 26
Project (outer:iter, inner)

id: 52
Project (iter, pos, item, score1:item5)

id: 27
ROWNUM (inner:<iter, pos>)

id: 53
1:1 fun [multiply] (item5:<score2, score1>)

id: 28
Project (iter, pos, item, score1)

id: 29
ROWNUM (pos:<item>/iter)

id: 30
Join (item3 = item2)

id: 31
DISTINCT

AGGR / item2
score1 = avg (score1)

id: 32
Project (iter, item, item3:item2)

id: 33
ROWRANK (item2:<iter, item>)

id: 34
/|+ child::element(wns:page)(item:item1)

id: 4
FRAG_UNION

id: 35
Project (iter, item1:item, score1)

id: 5
EMPTY_FRAG

id: 6
FRAGs

id: 36
Project (iter, pos, item, score1)

id: 7
fn:doc (item:<item1>)

id: 8
Project (iter, item1:item)

id: 9
Cross

id: 10
Attach (score1), val: 1

id: 12
TBL: (iter)

[#1]

id: 11
TBL: (pos | item)

[#1,"enwikiquote.xml"]

id: 37
ROWNUM (pos:<item>/iter)

id: 38
Join (item3 = item2)

id: 39
DISTINCT

AGGR / item2
score1 = avg (score1)

id: 40
Project (iter, item, item3:item2)

id: 41
ROWRANK (item2:<iter, item>)

id: 42
/|+ descendant-or-self::element(*:*)(item:item1)

id: 43
Project (iter, item1:item, score1)

id: 44
Attach (pos), val: #1

id: 45
Project (iter, item, score1)

id: 46
Join (iter = iter1)

id: 47
Project (iter, score1)

id: 48
Project (iter1:iter, item)

id: 49
ROOTS

id: 54
Join (iter1 = iter)

id: 55
Project (score2:score1, iter1:iter)

id: 140
UNION

id: 56
Attach (pos), val: #1

id: 141
Project (iter, pos, item, score1)

id: 147
EMPTY_TBL: (iter | pos | item | score1)

id: 57
Project (iter:iter1, item, score1)

id: 58
1:1 fun [multiply] (score1:<score2, item5>)

id: 59
AND (item:<item1, item2>)

id: 60
Join (iter1 = iter2)

id: 61
Project (iter1:iter, item1:item, score2:score1)

id: 123
Project (iter2:iter, item2:item, item5:score1)

id: 62
Attach (pos), val: #1

id: 124
Project (iter, pos, item, score1:item5)

id: 63
Project (iter:iter1, item, score1)

id: 64
1:1 fun [multiply] (score1:<score2, item5>)

id: 65
AND (item:<item1, item2>)

id: 66
Join (iter1 = iter2)

id: 67
Project (iter1:iter, item1:item, score2:score1)

id: 106
Project (iter2:iter, item2:item, item5:score1)

id: 68
Project (iter, pos, item, score1:item5)

id: 107
Project (iter, pos, item, score1:item5)

id: 69
1:1 fun [multiply] (item5:<score1, score2>)

id: 70
Join (iter = iter1)

id: 71
UNION

id: 80
Project (iter1:iter, pos, item, score2:score1)

AGGR / iter
score1 = avg (score1)

id: 77
Attach (score1), val: 1

id: 81
Tijah function "pftijah_ftfun_b_sxx" (iter, pos, item, score1)

(loop: iter)

id: 73
Cross

id: 78
DIFF

id: 74
Attach (score1), val: 1

id: 76
Project (iter:inner)

id: 75
TBL: (pos | item)
[#1,"technology"]

id: 79
Project (iter)

id: 82
fun param (iter, pos, item)

id: 83
Project (iter, pos, item)

id: 104
fun param (iter, pos, item)

id: 84
Project (iter, pos, item, score1)

id: 105
Project (iter, pos, item)

id: 3
nil

id: 85
ROWNUM (pos:<item>/iter)

id: 86
Join (item3 = item2)

id: 87
DISTINCT

AGGR / item2
score1 = avg (score1)

id: 88
Project (iter, item, item3:item2)

id: 89
ROWRANK (item2:<iter, item>)

id: 90
/|+ child::element(wns:text)(item:item1)

id: 91
Project (iter, item1:item, score1)

id: 92
Project (iter, pos, item, score1)

id: 93
ROWNUM (pos:<item>/iter)

id: 94
Join (item3 = item2)

id: 95
DISTINCT

AGGR / item2
score1 = avg (score1)

id: 96
Project (iter, item, item3:item2)

id: 97
ROWRANK (item2:<iter, item>)

id: 98
/|+ descendant-or-self::element(*:*)(item:item1)

id: 99
Project (iter, item1:item, score1)

id: 100
Attach (pos), val: #1

id: 101
Project (iter:inner, item, score1)

id: 108
1:1 fun [multiply] (item5:<score1, score2>)

id: 109
Join (iter = iter1)

id: 110
UNION

id: 118
Project (iter1:iter, pos, item, score2:score1)

AGGR / iter
score1 = avg (score1)

id: 115
Attach (score1), val: 1

id: 119
Tijah function "pftijah_ftfun_b_sxx" (iter, pos, item, score1)

(loop: iter)

id: 112
Cross

id: 116
DIFF

id: 113
Attach (score1), val: 1

id: 114
TBL: (pos | item)

[#1,"magic"]

id: 117
Project (iter)

id: 120
fun param (iter, pos, item)

id: 121
fun param (iter, pos, item)

id: 122
Project (iter, pos, item)

id: 125
1:1 fun [multiply] (item5:<score1, score2>)

id: 126
Join (iter = iter1)

id: 127
UNION

id: 135
Project (iter1:iter, pos, item, score2:score1)

AGGR / iter
score1 = avg (score1)

id: 132
Attach (score1), val: 1

id: 136
Tijah function "pftijah_ftfun_b_sxx" (iter, pos, item, score1)

(loop: iter)

id: 129
Cross

id: 133
DIFF

id: 130
Attach (score1), val: 1

id: 131
TBL: (pos | item)

[#1,"indistinguishable"]

id: 134
Project (iter)

id: 137
fun param (iter, pos, item)

id: 138
fun param (iter, pos, item)

id: 139
Project (iter, pos, item)

id: 142
Join (iter = iter1)

id: 143
DISTINCT

id: 144
Project (iter1:iter)

id: 145
Project (iter)

id: 146
Select (item)

id: 151
Join (item3 = item2)

id: 152
DISTINCT

AGGR / item2
score1 = avg (score1)

id: 153
Project (iter, item, item3:item2)

id: 154
ROWRANK (item2:<iter, item>)

id: 155
/|+ child::element(wns:title)(item:item1)

id: 156
Project (iter, item1:item, score1)

id: 157
Attach (pos), val: #1

id: 158
Project (iter:inner, item, score1)

Figure 7: The unoptimised version of the plan given in Figure 6 on page 88. The and operators are
explicit, and interleaved with the multiplications for the corresponding score propagation. (See enlarged
detail in Figure 7a on page 91)
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Figure 7a: (Detail of Figure 7 on page 90)
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id: 1
SERIALIZE (item134) order by (pos137)

id: 9
Project (item134, pos137)

id: 10
RANK (pos137:<iter167, pos168>)

id: 11
Project (item134:item163, iter167:iter72, pos168:pos165)

id: 12
ROWNUM (pos165:<item160 (desc), iter162, pos164>/iter72)

id: 13
ROWNUM (pos164:<item163>/iter162)

id: 14
Project (item163, iter72, item160, iter162)

id: 15
/|+ child::element(wns:title)(item163:item65)

id: 4
FRAG_UNION

id: 16
Project (iter162, iter72, item160, item65)

id: 5
EMPTY_FRAG

id: 6
FRAGs

id: 17
ROWNUM (iter162:<iter72, pos161>)

id: 7
fn:doc (item3:<item1>)

id: 8
TBL: (item1 | iter2)

["enwikiquote.xml",#1]
["enwikiquote.xml",#2]
["enwikiquote.xml",#3]

id: 18
Project (item65, iter72, item160, pos161)

id: 19
ROWNUM (pos161:<iter7>/iter72)

id: 20
Project (item65, iter72, item160, iter7)

id: 21
1:1 fun [multiply] (item160:<iter158, iter159>)

id: 22
Attach (iter159), val: 1

id: 23
Project (item65, iter72, iter7, iter158)

id: 24
1:1 fun [multiply] (iter158:<iter156, iter157>)

id: 25
Project (item65, iter72, iter7, iter156, iter157)

id: 26
1:1 fun [multiply] (iter157:<iter155, iter19>)

id: 27
Project (item65, iter72, iter7, iter156, iter155,

iter19)

id: 28
1:1 fun [multiply] (iter156:<iter153, iter154>)

id: 29
Attach (iter155), val: 1

id: 30
Project (item65, iter72, iter7, iter19, iter153,

iter154)

id: 31
1:1 fun [multiply] (iter154:<iter151, iter40>)

id: 32
Project (item65, iter72, iter7, iter19, iter153,

iter151, iter40)

id: 33
1:1 fun [multiply] (iter153:<iter152, iter30>)

id: 34
Attach (iter152), val: 1

id: 35
Attach (iter151), val: 1

id: 36
Project (item65, iter72, iter7, iter19, iter40,

iter30)

id: 37
Join (iter7 = iter146)

id: 38
Project (item65, iter30, iter7, iter19, iter40)

id: 96
Project (iter72:iter2, iter146:iter7)

id: 39
Join (iter7 = iter145)

id: 47
ROWNUM (iter7:<iter2, pos6>)

id: 40
Project (item29, iter30, iter7, iter19, iter40,

item18, item39)

id: 83
Project (iter145:iter7, item65)

id: 41
Join (iter7 = iter143)

id: 84
DISTINCT

id: 42
Project (item29, iter30, iter7, item39, iter40)

id: 76
Project (iter143:iter7, item18, iter19)

id: 43
Join (iter7 = iter141)

id: 77
Join (iter7 = iter16)

id: 44
Project (iter40, item39, iter7)

id: 67
Project (iter141:iter7, item29, iter30)

id: 45
Join (iter7 = iter37)

id: 68
Join (iter7 = iter27)

id: 46
Project (item5, iter2, iter7)

id: 55
Tijah function "pftijah_ftfun_b_sxx" (iter37, pos38, item39, iter40)

(loop: iter7)

id: 56
Project (iter7)

id: 57
fun param (iter7, pos15, item14)

id: 48
ROWNUM (pos6:<item5>/iter2)

id: 49
Project (item5, iter2)

id: 50
/|+ child::element(wns:page)(item5:item4)

id: 51
Project (iter2, item4)

id: 52
/|+ descendant-or-self::element(*:*)(item4:item3)

id: 53
Project (iter2, item3)

id: 54
ROOTS

id: 58
ROWNUM (pos15:<item14>/iter7)

id: 63
fun param (iter34, pos35, item36)

id: 59
Project (iter7, item14)

id: 64
Project (iter34:iter7, pos35:pos147, item36:item148)

id: 3
nil

id: 60
/|+ child::element(wns:text)(item14:item13)

id: 61
Project (iter7, item13)

id: 62
/|+ descendant-or-self::element(*:*)(item13:item5)

id: 65
Attach (item148), val: "magic"

id: 66
Attach (pos147), val: #1

id: 69
Project (iter7, pos24, item22)

id: 72
Tijah function "pftijah_ftfun_b_sxx" (iter27, pos28, item29, iter30)

(loop: iter7)

id: 70
Join (iter2 = iter139)

id: 73
fun param (iter7, pos15, item14)

id: 71
TBL: (item22 | iter139 | pos24)

["technology",#1,#1]
["dupery",#2,#1]

["legerdemain",#3,#1]

id: 74
fun param (iter7, pos24, item22)

id: 75
Project (iter7, item22, pos24)

id: 78
Tijah function "pftijah_ftfun_b_sxx" (iter16, pos17, item18, iter19)

(loop: iter7)

id: 79
fun param (iter7, pos15, item14)

id: 80
fun param (iter10, pos11, item12)

id: 81
Project (iter10:iter7, pos11:pos147, item12:item150)

id: 82
Attach (item150), val: "indistinguishable"

id: 85
Project (iter7, item65)

id: 86
Select (item18)

id: 87
DISTINCT

id: 88
Project (iter7, item65, item18)

id: 89
Select (item39)

id: 90
DISTINCT

id: 91
Project (iter7, item65, item18, item39)

id: 92
Select (item29)

id: 93
Project (iter7, item65, item18, item39, item29)

id: 94
Join (iter7 = iter144)

id: 95
Project (item65:item5, iter144:iter7)

Figure 8: The plan generated from the query in Section 5.22.5. The separation of score and Boolean
calculation is clearly visible. The variable search terms originate in the dark grey box on the right. (See
enlarged details in Figure 8a on page 93)
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Figure 8a: (Details of Figure 8 on page 92)





Chapter 6

The Prototype Implementation

The ideas proposed in this thesis have been implemented in the PathfinderFT compiler. Its
current version still is a proof-of-concept only, i.e., neither intended nor suitable for produc-
tion use. The following discussion does not provide insights into the principal Pathfinder

FT

architecture, which has been discussed thoroughly in the previous chapters.

6.1 Goals & Achievements

On paper, the idea of simply extending Pathfinder’s relational item sequence encoding with
another column looks nice. But is it a viable approach? To prove its feasibility, a prototype was
implemented. The goals of this effort were

• to show that score propagation can actually be implemented in the proposed way,

• to verify the locations where the scoring model needs to be instructed about how to handle
the scores.

• to demonstrate that the required changes are indeed quite isolated, i.e., minimally invasive
to the original Pathfinder compiler, and

• to provide a platform for further development and evaluation of scoring models in the
XQuery Full Text environment.

Proof of concept To the extent to which PathfinderFT actually implements XQuery Full
Text, the first objective can be considered accomplished. Although neither XQuery, nor
XQuery Full Text are implemented to their full scope, Pathfinder

FT
now is a reasonably

complete, and runnable proof of concept. Unless otherwise noted, all compilation rules described
in this thesis are implemented in the prototype.

Locality of required changes The required extensions gather in a very early compilation
phase: The abstract syntax tree (generated by an adoption of the XQuery Full Text parser
from Christian Grün’s BaseX XML database [8]) is compiled into a Relational Algebra plan, an
XML representation of which is handed on to the original Pathfinder compiler. From there on,



96

query processing proceeds as for the non-Full Text case. Only the Full Text back-end must be
capable to understand calls present in the Relational Algebra plan, and to return scored Booleans
as required by the XQuery Full Text definition. Of course, the Pathfinder compiler must
be capable to generate such calls, but this feature has already been available from the PF/Tijah
project [14].

Although the Relational Algebra plans triggered one or two bugs in the Pathfinder compiler
—which have not been observed until then, because the Pathfinder compiler has been con-
fronted exclusively with plans generated by itself— I would not consider their fixing an adoption
of the Pathfinder compiler to the needs of Pathfinder

FT
.

Adoption was, however, required on the side of the Full Text index: The PF/Tijah index has

not been used before in the very restricted way it is employed by PathfinderFT, but rather in a
much broader way as depicted on page 31. But it is no surprise to find the need for adaptations
here: The XQuery Full Text specification defines a certain return type for the contains

text operator, and if a Full Text engine does not obey here, it naturally requires modification.

Identification of scoring model parameters The identification of scoring model parameters
(see Section 5.23), the clean implementation in an accessible programming language (Haskell,
further described in the following sections), and the description of issues summoned by the
design of the XQuery and XQuery Full Text languages should open the door for further
investigations in the XQuery Full Text environment.

6.2 Why Haskell?

At the time of writing, Haskell [23] seems to be the state-of-the-art functional programming
language (FPL). It comes with an elaborate (i.e., rich, clean, and comprehensible) syntax, a very
active community, and a far more than sufficient set libraries.

The nature of a FPL suits the structure of an algebraic-style compiler very well, and Haskell
proves being a useful tool for compiler prototyping: The 80.3kB PathfinderFT source is made
up of 2288 lines1 (including maintenance code and helper modules) of very readable code, plus
comments, summing up to just above 144kB in total. Most of the compiler logic is assembled in
the three modules ToCore, PathfinderFT, and Scoring, see Figure 9 on page 97. Together, these
account for only 784 lines (40071kB) of code.

This chapter shows some of the code actually used in those modules, and it demonstrates a
very close similarity between the actual implementation, and the formulas used in this thesis to
describe the ideas.

After all: Programming with Haskell is fun.

6.3 Architecture

While Figure 2 on page 37 shows the overall architecture of the Pathfinder
FT

compiler within
its ecosystem, Figure 9 on page 97 shows some of the Haskell modules used to build the Path-

1Counted November 2010, using: find PathfinderFT -type f -exec grep ’^>’ {} ’;’ | wc -l -c
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finder
FT

compiler, and how they relate. Blue, oval nodes depict modules that model a language,
while red, box-shaped nodes refer to processing modules.

XQuery

Full Text

Core Algebra

ToCore

Scoring

PathfinderFT

Main

Figure 9: Dependencies between the most important Haskell modules of the Pathfinder
FT

compiler.

The languages XQuery, and XQuery Core, both embed Full Text expressions. The main
module first triggers the conversion from XQuery to XQuery Core, and then the core Path-
finder

FT
module which transforms XQuery Core to Relational Algebra. Both of them make

use of the scoring module, which hosts all information required to implement a scoring model. It
is used during conversion to XQuery Core (e.g., to unfold weights, Section 5.22.4.3), and during
compilation to Relational Algebra (e.g., to attach the default score to a relation).

6.4 History of Development

Initially, I have partially reconstructed the Pathfinder compiler as described in [21], to gain a
deeper insight in the workings of the Pathfinder architecture, and to explore possibilities for
the desired extension. To this end, the Haskell language [23] was a natural choice: It is very
simple to build algebraic-style compilers in this language. A few examples will be shown in the
remainder of this section.

After having a very basic re-implementation of the Pathfinder compiler, I started exploring
where scores would have to be propagated, and what consequences this had for the rest of the
compiler. At that time, PathfinderFT was lacking only a parser, a database back-end, an
optimiser, the type system, and a scoring engine, i.e., XQuery ASTs expressed in Haskell
were compiled and the resulting Relational Algebra executed by a naive implementation of a
relational interpreter. Scores were calculated with a Levenshtein algorithm.
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When the concept proved feasible, it became desirable to actually have a version of Pathfin-
derFT that would be able to benefit from the Relational Algebra optimisations available in the
original Pathfinder compiler, and to work on real-life data, i.e., larger XML instances than the
ones processable with the naive interpreter available at that time. Also, the PF/Tijah project
was alive at that point in time, and it was tempting to use it as the Full Text scoring engine.

Sadly (or, from any other point of view, rather luckily) the Pathfinder compiler had improved
a lot in the meantime, and it took some time to actually synchronise the Relational Algebra pro-
duced by PathfinderFT with the Relational Algebra understood by the Pathfinder compiler.
The two relational algebras were in fact so incompatible, that all compilation rules of the Path-
finder

FT
compiler had to be changed. While conceptually still the same idea was implemented,

the target language to express it had subtly changed in too many places.

Fortunately, due to the modular and clean design of the Haskell code, implementing the re-
quired changes was rather easy. So the sheer amount, the identification, and the comprehension
of the misfits was the biggest obstacle here. During that phase, Jan Rittinger, from the Database
Group in Tübingen, was a constant source of help, pointing out a lot of errors the plans generated
by the PathfinderFT compiler contained, and showing me some technical subtleties inherent in
the Pathfinder compiler’s plans.

At about the same time Jan Flokstra, from the Database Group in Twente, provided me with
the pftijah Relational Algebra function to interface the PF/Tijah index, which is used in
Section 5.21.2. He also allowed me to pass either keywords, or complete NEXI queries to the
scoring engine. Finally, Leonard Wörteler, student of Computer Science in Konstanz, adopted the
XQuery Full Text parser from Cristian Grün’s BaseX XML database [8] to emit XQuery

Full Text ASTs understood by the PathfinderFT implementation.

Together with the optimising Pathfinder compiler, the Tijah index and the MonetDB
RDBMS, the PathfinderFT system forms a reasonable, though very basic, implementation
of the architecture described in this thesis.

6.5 Query data structures

XQuery Full Text, and XQuery Core expressions are modelled as algebraic data types XQ

and Core respectively, reflecting the query structure in a very natural way. E.g., an XQuery
item sequence is constructed with the constructor function

X_seq :: [XQ] -> XQ

In a first step, the query represented by an expression of type XQ is transformed into an expression
of type Core, thereby trading some XQuery expressions for more primitive XQuery Core
constructs:

toCore :: Pragmas -> XQ -> Core

The first argument prg is used to maintain pragmas, which may be used to control variations of
the compilation rules.

One example of its use is the removal of Boolean predicates, which are replaced by explicit
for-loops in the XQuery Core language, as discussed in Section 5.16:

toCore prg (X_predBool e2 e1) — core counterpart:
= C_for dot "" "" e1’ [] — for . in e1’
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$ — return

C_if e2’ (C_var dot) (C_seq []) — if e2’ then . else ()

where

e1’ = toCore prg e1

e2’ = toCore prg e2

A Boolean predicate query like e1[e2] is represented by the Haskell expression X predBool

e′2 e′1, with e′i the expression derived for ei. Note the twist in the ordering of arguments: The
predicate e2 is applied on the expression e1.

Recursive calls to toCore provide XQuery Core versions ei’ of the subexpression ei. A dot
occurring in a predicate is represented by a special variable dot. This variable is used as iteration
variable in the created for-loop.

The constructor function

C_for :: String -> String -> String -> Core -> [Sort Core] -> Core -> Core

consumes three variable names for the iteration variable, the positional variable, and the score
variable, then a core expression that computes the sequence to iterate over, a potentially empty
list of expressions to calculate sort keys, and finally an expression that computes the return value
for each iteration. An empty variable name means that no binding is created. The variable dot

is special, in that it represents the . seen often in XQuery predicates.

The representation of conditional expressions is even simpler, provided for by the constructor
function

C_if :: Core -> Core -> Core -> Core

consuming the condition, and two branches for the true- and false-cases.

The other language constructs are simply implemented along these lines.

6.6 Plan data structures

For the construction of Relational Algebra plans, a directed acyclic graph (DAG) structure is
required: Of course, this comes in handy to collapse identical sub-plans, and to avoid repetitive
calculations. But the main reason is that common subtree elimination (CSE) provides means to
simply handle the not referentially transparent semantics of XQuery’s node construction. The
idea, explained in [21], is to

• identify all Relational Algebra operators witch have the same semantics and the same
arguments,

• with the exception of node constructors, which are never identified.

The rationale of this being the fact that exactly the Relational Algebra operators that are free
from side effects return the same result for the same arguments (i.e., they are referentially
transparent). Node constructors, however, always return different results, i.e., they must not be
identified, even if they are applied on the same arguments. See also Section 2.3.1 for a discussion
of referential transparency.
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6.6.1 The DAG structure

The DAG structure is simply a map from References (Integers do) to pathfinder algebra nodes
(PAN), and a plan is a DAG with a pointer to the root node. The M prefix points to names from
the Data.Map module.

type DAG = M.Map Ref PAN

type Plan = (DAG, Ref)

A PAN contains a pathfinder node description (PND), describing the operation to be performed,
and a list of arguments to the operator, identified by their references in the DAG. A schema is
added for sanity-checking of the created plans, a tool useful for debugging, but currently not
used otherwise by the PathfinderFT compiler.

data PAN

= PAN { pnd :: PND

, schema :: Schema — not discussed in the following
, args :: [Ref]

}

deriving (Eq, Ord, Show)

Now the PND data type simply enumerates all Relational Algebra operators, providing means to
describe their semantic arguments, e.g., what columns to use for projection, or which function to
use for aggregation. Only an excerpt of the 38 operators is shown here. Name encodes attribute
names, Val holds primitive, though polymorphic values (i.e., integers, strings, node surrogates,
etc.):

data PND

| P_attach Name Val

| P_union

| P_difference

| P_eqjoin Name Name

| P_select Name

| P_project [OnTo]

— data OnTo = On Name | To Name Name describes the projections
| P_agg Agg Name Name (Maybe Name)

— aggregation: aggscore:avg score/iter becomes P_agg A_avg Score Score (Just Iter)

...
| P_doctbl Name Name

| P_element Name Name

| P_textnode Name Name

| P_twig Name Name

| P_roots

| P_fragUnion

| P_step Axis Nodetest Name Name — axis step
deriving (Eq, Show, Ord)

One point to observe in the above definitions is the fact that PND can be ordered, by deriving
Ord. This is an important feature for the intended DAG construction with built-in CSE: By
maintaining a reverse mapping (which requires ordering for the keys)

type Signature = M.Map (PND,[Ref]) Ref
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it is easy to determine whether an operator with a given set of arguments (identified by the pair
(PND,[Ref])) has already been added to the DAG, and, if so, find its reference number.

6.6.2 Monadic DAG construction

To simplify the creation of Relational Algebra plans, a monadic DAG constructor is defined,
which automatically provides CSE where appropriate, guarantees well-formedness of the gener-
ated plan (no dangling pointers, i.e., no references to undefined nodes), and which can further
provide sanity checks not discussed in this work. The result is an embedded domain-specific
language, examples of its use being shown in Section 6.7.

A simple monadic state transformer is used, with the additional ability to throw/catch error
messages. The infrastructure for error handling is not discussed here. While it is useful for
debugging plan generation, it is not required to perform the principal task.

data ST e s a = ST (s -> Either e (s, a))

instance (STError e) => Monad (ST e s)

The monadic DAG constructor is a specialisation of the state transformer

type Planner a = ST String (Ref, DAG, Signature) a

the state being a triple of

1. Ref, the last reference number used, simplifies finding the next free reference to assign to
a new node,

2. DAG, the DAG constructed so far, and

3. Signature, the reverse mapping introduced on page 100.

The Planner is controlled via two functions, only the signature of which is given here:

known :: PND -> [Ref] -> Planner (Maybe Ref)

append :: PND -> [Ref] -> Planner Ref

Given a PND and a list of argument references to apply it on, the known function returns Just

r bearing its reference, iff such an operation is already present in the DAG, by simply looking it
up in the Signature map. Otherwise Nothing is returned.

The append function adds a PAN constructed from the PND and the argument reference list to
the DAG, no matter whether a node with the same signature already exists. A reference to the
newly created PAN is returned, and may be used as argument for further operations, or as DAG
root.

These two functions are used by the add function, which determines whether CSE should be
used for the operator to be added, or not. Its complete definition is:

add :: PND -> [Ref] -> Planner Ref

-- always add ops with side effects

add p@(P_element {}) as = append p as

add p@(P_textnode {}) as = append p as

add p@(P_content {}) as = append p as

-- perform CSE for all other ops

add p as = known p as >>= maybe (append p as) return
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The last line makes add return the reference to an existing node with the same signature if one
exists, or the reference of a newly constructed node otherwise.

Finally, add and the PND constructor functions are used to define the front-end functions in a
rather boring and repetitive style. Again, only some operators are shown:

attach n v r = add (P_attach n v) [r]

cross l r = add P_cross [l,r]

union r1 r2 = add P_union [r1, r2]

difference r1 r2 = add P_difference [r1,r2]

eqjoin n1 r1 n2 r2 = add (P_eqjoin n1 n2) [r1,r2]

select n r = add (P_select n) [r]

project ps r = add (P_project ps) [r]

...

As a toy example, consider the following Relational Algebra expression. Given two relations
r1, r2 :: Reliter,item, find those iterations where the items are equal:

πiter / σitem2 / opitem2:
item1=item

/ (πiter1:iter
item1:item

r1 on
iter1=iter

r2)

The join operator can be applied partially to one operator, returning a function (this style of
partial operator application is known as currying):

πiter / σitem2 / opitem2:
item1=item

/ ( on
iter1=iter

r2) / πiter1:iter
item1:item

r1

Given two references r1, r2 :: Ref, referring to the calculations of r1, r2 respectively, the
implementing Haskell code is simply a copy of the above formula, in reverse order, and using
slightly different syntax.

project [To Iter1 Iter, To Item1 Item] r1

>>=

eqjoin Iter r2 Iter1

>>=

op O_eq Item2 [Item1, Item]

>>=

select Item2

>>=

project [On Iter]

This expression is of type Planner Ref, indicating that it (probably) modifies the DAG, and
returns a reference for further usage.

Of course, this style allows for imperative style “variable binding”. A similar implementation of
the above example is the less elegant, but maybe more catchy version below:

do r1’ <- project [To Iter1 Iter, To Item1 Item] r1

r2’ <- project [To Iter2 Iter, To Item1 Item] r2

eqjoin Iter2 r2’ Iter1 r1’ >>= op O_eq Item [Item1, Item2]

>>= select Item >>= project [On Iter]

Here, the references from calculating the projections are stored in variables r1’, r2’ :: Ref

respectively. The last two lines form a single monadic action whose result is returned by the
do-block.
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Although I have not introduced the types nor semantics of the complete embedded language, it
should be possible now to grasp how the Relational Algebra plans are constructed.

6.7 Compilation

This section shows some of the code actually present in the PathfinderFT prototype imple-
mentation. As such, it is a little bit more technical to read and understand than the formulas
presented in Chapter 5. However, the resemblance between Haskell code and formulas should
be obvious by now, and make it easy to grasp the additional details.

6.7.1 Fragment handling

As mentioned before (see Section 5.2.1), a compilation step not only returns the Relational Alge-
bra code to calculate an item sequence, but also information about all the fragments incarnated
by the subexpression. This is reflected by the type of the main compilation function

comp :: Env -> Core -> Planner (Ref, FragU)

which takes an environment containing the variable lookup function Γ, the loop relation, and
pragma information as first argument, and then maps an XQuery Core expression to a monadic
DAG constructor that returns a reference to the root of the generated expression, and also
fragment information.

data Env = Env {gamma :: Gamma, loop :: Ref, pragma :: Pragmas}

For now, one can consider FragU to represent a disjoint union of all fragments generated by the
compiled expression. Such fragment unions can be united further with the function

mbFragUnion :: FragU -> FragU -> Planner FragU

as will be demonstrated in the next sections.

The truth is a bit more complicated than that, because the Pathfinder compiler does not
actually accept an arbitrarily nested expression of unions of fragments, but insists on a linked
list instead. Thus, FragU rather contains a list of fragments generated so far, which is united
only when used, and then in a degenerated left-deep style. Also mbFragUnion refuses to add
empty fragments to that list.

A convention for readability: If an XQuery Core expression stored in variable e is compiled,
the returned reference and fragments are often named e’, and e respectively.

6.7.2 Direct score manipulation

One of the simplest, though interesting, compilation rules is probably direct score manipulation,
Section 5.9. The Haskell implementation reads

comp env (C_scored e1 e2)

= do (e1’,e1_) <- comp env e1

e1’ <- cast Score1 Item T_dbl e1’

>>=
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project [To Score Score1, To Iter1 Iter]

(e2’,e2_) <- comp env e2

e2’ <- project [On Iter, On Pos, On Item] e2’

seq <- eqjoin Iter1 e1’ Iter e2’

>>=

project [On Iter, On Pos, On Item, On Score]

frg <- mbFragUnion e1_ e2_

return (seq,frg)

There are some things to note here:

Imperative style “variable assignment with overwriting” is used two times when calculating e1’,
and e2’ respectively. Of course these are different variables, the latter incarnation obscuring the
earlier one, rather than overwriting it.

The item attribute from e1 is casted to a double when being introduced as score. Casting is never
shown in the compilation rules given in Chapter 5. Hence, the projection shown in Section 5.9
looks a bit different here.

The fragment union is calculated as explained in the previous section, and the pair of the reference
seq to the resulting Relational Algebra expression and the calculated fragment union is returned.

6.7.3 Sequences

Another example, which also shows Haskell’s usefulness for simply expressing complex con-
struction tasks, is the compilation of sequence expressions. The ellipsis given in the compilation
rule in Section 5.5 is replaced with a combination of mapM and zipWithM in the real code:

comp env (C_seq xs) — xs not empty
= do (xs’,xs\_) <- mapM (comp env) xs >== unzip

seq <- zipWithM (attach Ord) (map N [1..]) xs’

>>=

foldl1M union

>>=

rownum Pos1 [Asc Ord,Asc Pos] (Just Iter)

>>=

project [On Iter, To Pos Pos1, On Item, On Score]

frg <- mbFragUnions xs_

return (seq,frg)

For a monadic structure m (such as monadic DAG construction), the function mapM defined in
the module Control.Monad, has the type

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

and it applies the provided function on each element of its list argument, forming a list of
results. Furthermore, the monadic computations of each such application are sequenced by the
>>= operator, making sure that all modifications to the generated plan are applied in order.

With this, it is easy to compile a list xs of XQuery Core expressions in one go, yielding a list
of type [(Ref,FragU)] that can be split into a list xs’ of references and a list xs of fragment
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unions by unzip2.

The binary version of mapM is

zipWithM :: Monad m => (a -> b -> m c) -> [a] -> [b] -> m [c]

also defined in Control.Monad. It pairs the elements from the two list arguments by application
of the provided function, and constructs a list from the results. Just as mapM does, the monadic
computations sequenced. Thus, the above Haskell code calculating seq implements something
rather similar to the following Relational Algebra expression:

πiter
pos:pos1
item
score

/ %pos1:(ord,pos)
/iter

/
⊎n
i=1 @ord:i

q
ei

y
Γ,L

6.7.4 Axis steps

An example that actually performs some score propagation and fragment union is the axis step
explained in Section 5.8.

Consider the XQuery Full Text expression e/α::n. To perform an axis step on the fragments
made available by expression e, the union of fragments returned from compiling emust be actually
built, see Section 6.7.1. This is done via

mkFragUnion :: FragU -> Planner Ref

which is also a monadic DAG construction function, i.e., if code for calculating the same fragment
union has already been added to the DAG, only its reference will be returned. Otherwise the
required calculation is added to the DAG.

The attribute ctx described in Section 5.8 is named Item1 here3, and is used as argument to the
step operator, which then adds an Item column containing the result nodes.

comp env (C_step a n e)

= do (e’,e_) <- comp env e

f <- mkFragUnion e_

g <- project [On Iter, To Item1 Item, On Score] e’

>>=

step a n Item Item1 f

>>=

rowrank Item2 [Asc Iter, Asc Item]

d <- project [On Iter, On Item, To Item3 Item2] g

>>=

distinct

r <- smStep (pragma env) g

>>=

eqjoin Item3 d Item2

>>=

rownum Pos [Asc Item] (Just Iter)

>>=

2Here, >== is a shorthand for lifting unzip into the monad.
3For technical reasons, the Pathfinder compiler only accepts a limited set of attribute names.
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project [On Iter, On Pos, On Item, On Score]

return (r,e_)

As all score propagation functions, smStep is defined in a dedicated module PathfinderFT.Scoring.
Its type

smStep :: Pragmas -> Ref -> Planner Ref

indicates that it consumes pragmas (taken from the compilation environment by pragma env)
that could be used to steer its exact behaviour.

The implementation of smStep given in Section 5.8 is straight forward, A avg names the aggre-
gator function avg to be used, and the pragmas are ignored:

smStep _ = agg A_avg Score Score (Just Item2)

6.7.5 Pragmas control score propagation

The Boolean operators are a good example to demonstrate the use of pragmas to control the
score propagation. PathfinderFT comes with the following implementation of smOr, which
contains all the alternatives described in Section 5.10:

smOr :: Pragmas -> Ref -> Planner Ref

smOr prg r

| pragmaTest prg ftBool_negInv — 〈a|x〉∨〈b|y〉 = 〈a∨b|x+ y − x · y〉
= return r

>>=

op O_add Item3 [Score1, Score2]

>>=

op O_mul Item4 [Score1, Score2]

>>=

op O_subtract Score [Item3, Item4]

| pragmaTest prg ftBool_negId — 〈a|x〉∨〈b|y〉 = 〈a∨b|x · y〉
= op O_mul Score [Score1, Score2] r

| pragmaTest prg ftBool_extreme — 〈a|x〉∨〈b|y〉 = 〈a∨b|max x y〉
= do x <- return r

>>=

op O_gt Item3 [Score1, Score2]

>>=

op O_not Item4 [Item3]

a <- select Item3 x

>>=

project [On Iter1, On Item, To Score Score1]

b <- select Item4 x

>>=

project [On Iter1, On Item, To Score Score2]

union a b
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| otherwise

= error "Scoring.smOr: need pragma"

The user may choose any of the three branches by setting the XQuery Full Text pragma
pfft:ftBool to one of the values negInv, negId, or extreme. All currently set pragmas are
passed to smOr in the prg variable. The above code uses pragmaTest in the guard expressions
to discriminate amongst known pragmas.





Chapter 7

Future Work

7.1 Performance testing

So how does this approach perform? While, of course, performance is an important aspect of
query processing, the focus of this work clearly lies on the conceptual difficulties and challenges.

Albeit I have shown (e.g., see Section 5.22.4.2) that proper plan generation may have a tremen-
dous effect on query evaluation speed, performance testing is not part of this thesis. For solid
performance measurements, at least the following aspects would need prior consideration.

Performance of the compiler Currently, parsing is done by an adoption of the BaseX
parser, which serialises the AST in form of Haskell code. This is parsed by the Pathfinder

FT

compiler before plan generation starts. The generated Relational Algebra plan is printed as an
XML representation, which is then consumed by the original Pathfinder compiler.

Obviously, in this setting, measuring the performance of plan generation of the prototype Path-
finderFT compiler —whose main design goal is comprehensibility, not performance— is some-
what pointless. To actually compare the performance of the underlying idea, it is certainly
required to first re-implement PathfinderFT inside the original Pathfinder compiler.

Performance of the Full Text engine Since PathfinderFT is designed to be somewhat
independent of the actual Full Text engine used, its performance should appear as a factor in
the overall performance findings. One the other hand, different Full Text engines may provide
different services, e.g., one may provide a NEXI interface, another one may only allow for simple
keyword search. Hence, completely abstracting from the Full Text engine may become difficult,
since its capabilities restrict the set of feasible plans.

To isolate the performance of any Pathfinder
FT

-based XQuery Full Text implementation,
one would have to measure the used Full Text engine on its own, embedded in another environ-
ment. Only then the gain, or loss, of performance caused by the PathfinderFT architecture
could be estimated.

Plan optimisation PathfinderFT does not perform any optimisations on the generated plan.
All these tasks are left to the original Pathfinder compiler (e.g., see Figure 7 on page 90 and
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Figure 6 on page 88). It may be worthwhile to investigate whether the Pathfinder optimiser

could make use of further knowledge about the plans PathfinderFT generates.

Interfacing the Full Text engine Currently, the Full Text engine is called via a function call
(see Section 5.21.2), and the Pathfinder optimiser makes no assumptions about the algebraic
properties of the called function. Making the Full Text interface a primitive Relational Algebra
operator, and teaching Pathfinder about its properties, could possibly open the door for much
more comprehensive optimisations.

7.2 Non-determinism

The example scoring result′ on page 77 introduces the rather nasty issue of non-determinism, i.e.,
multiple values of truth for each iteration and position in the item sequence. So how to make a
Boolean decision?

Recall the compilation rule for conditional expressions (Section 5.11). We used a select and a
difference on the loop relation to discriminate between the two branches to choose from. This
is not sufficient here any more, because different truth values may occur “simultaneously”. For
each iteration, one could count the trues and falses, and relate their numbers. One could also
weight this process by the scores (which makes sense if the score represents confidence in the
item, but does not, if the score is just a finer grained measure of truth).

A more natural means to deal with this situation would be to skip the aggregation of the item
column, and explicitly allow different values. From a probabilistic point of view, one might say
that the score attached to an item does not only represent its membership in the item sequence
(i.e., fuzzy set membership), but instead the probability of its occurrence at exactly this position
in the sequence.

This approach en passant answers the question for the semantics of conditional expressions with
a fuzzy condition, because the combination of the results from both branches becomes quite
natural. As an example, consider this query:

if doc("schroedingers-cat.xml") contains text "poison"

then "dead"

else "alive"

In case the Full Text engine determines the condition to yield

iter pos item score tok
1 1 true 0.5 τ1
1 1 false 0.5 τ2

representing a 50% chance for the cat to die, then the superposition of the cat’s status is easily
represented by

iter pos item score tok
1 1 "dead" 0.5 τ1
1 1 "alive" 0.5 τ2

The question is how to represent measurement. In the end, i.e., after evaluating the complete
query, one will see a relation representing several possible outcomes of an experiment.
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This approach can be seen as an adoption of what [12] presents, see Section 5.11: Only one
variable is used (i.e., the expression result), and the scores annotated to the result represent the
probability of this assignment becoming true.

7.3 Other interpretations of Score

Section 5.22.6 discussed how the sequence encoding schema could be extended with an additional
tok column, containing token positions. The trouble encountered renders this approach less
desirable.

Instead of adding a tok column, one might extend the Score type, i.e., move the extension to
the already attached scores. With XML at our fingertips, it seems feasible to use an XML
structure to encode the findings of the Full Text engine. Although the XQuery Full Text
specification [1] requires contains text to return a Boolean with a score, it describes an XML
representation1 of the AllMatches found by the Full Text engine.

Of course, score propagation becomes much more difficult, because it would not combine numbers,
but rather complex expressions of the AllMatches type. In fact, it may become necessary to use
a different representation than AllMatches to describe the outcome of a score propagation.

On the other hand, the expressive power of the attached information solves some of the problems
introduced in Section 5.22.6: This not only allows to add lists of tokens to a single tuple in
the sequence encoding relation, but also store how these tokens are related. Further, we do not
multiply items with the tokens, which helps avoid non-determinism (also discussed in Section 7.2).

If the variables bound by the score keyword shall remain numbers (which is handy, e.g., for
sorting), then it is required to calculate a score from the information attached in the score
column. This defers the loss of information until the number is calculated. But even then,
enclosing expressions will see the matches attached to the items.

7.4 Avoid locality

A general limit of this approach is the locality of score propagation: Each XQuery operator
comes with some knowledge about how to propagate scores, and although pragmas can be used
to “parametrise” this, there is no means an operator could know where its arguments came from.

This issue can be eased by making the Score type more expressive. The previous section already
discussed the use of XML to achieve this. Instead of dealing with AllMatches, one may construct
the expression tree in a bottom-up fashion, and store its XML representation (i.e., a node
surrogate for the root node of this representation) in the score column.

Thus, to evaluate an expression e with subexpressions e0, . . . , en, we evaluate the subexpressions
which returns the respective results annotated with how they were calculated:

〈e′0|s0〉, . . . , 〈e′n|sn〉

From this, one may calculate e′ = f e0 . . . en, where f represents the function combining the
subexpressions, and annotate it with

1http://www.w3.org/TR/xquery-full-text/#tq-ft-XML-representation

http://www.w3.org/TR/xquery-full-text/#tq-ft-XML-representation
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<application fun="a description of f">
<argument>s0</argument>

. . .
<argument>sn</argument>

</application>

To achieve this, it is not even required to have access to the parse tree: Any implementation
of an operator or a function f is free to return a pair of its “natural” result, and some kind of
identifier referring to the function itself. E.g., with ⊕ being the primitive operation employed to
calculate addition, one may implement

q
e1 + e2

y
= 〈x1 ⊕ x2|γ〉

where

〈xi|si〉 =
q
ei

y

γ =


<application fun="addition">

<argument>s1</argument>

<argument>s2</argument>

</application>


Hence, although this does not introduce second order functionality (see Section 2.3.1.2), it may

allow to work around the restrictions imposed by the PathfinderFT architecture (see Sec-
tion 2.3.1.3). Those, however, came for a good reason: With operators “knowing” their argu-

ments, query rewriting becomes a black art. Following this road would blur PathfinderFT’s
strict separation between a fuzzy Full Text language, and a somewhat clean database query
language.



Chapter 8

Lessons Learnt

The query language XQuery is not easy to extend, and I would not consider it suitable as a
general purpose programming language1, because it lacks certain data structures, see Section 2.4.

The extension from XQuery to XQuery Full Text proposed by the W3C lacks reasoning
about the semantics of the extension. While leaving many aspects abstract seems a good idea
at first, as this allows for flexibility in implementations of XQuery Full Text, it makes the
implementation of a suitable framework quite hard. Then again, some aspects are regulated
to a superfluous level of detail, e.g., weights must be in the range [−1000, 1000] although their
semantics is deliberately undefined. One could even argue about whether a (scored) Boolean is
actually the right thing to return from the Full Text engine, see Section 2.3.3.

The implicit score propagation deemed necessary in Section 2.2.2.4 not only means to semanti-
cally parallelise two different computations, namely that of the value and that of the score. It
also implies that every time the same syntactic construct is used, the same computations are
performed for both, the value and the score. I.e., the syntax determines two different computa-
tions instead of just one. This can be alleviated only by the excessive usage of pragmas, which
reduces the syntactic benefit of implicit score propagation to absurdity.

Also, to achieve orthogonality consistent with scores, this parallelisation implies the algebra on
scores (we used floats with arithmetics) to be compatible with all the algebras of types that the
scores are paired with (e.g., Boolean, axis-steps, etc.), which seems difficult to achieve.

A score can bear different meanings, and I doubt that restriction to one is sufficient in general.
Why not allow different types of scores in one query, and handle them differently by explicitly
programming how they should combine? The approach of explicitly dealing with scores (taken
in the PF/Tijah project, see page 31) seems much more sane to me now: Calling the Full Text
engine returns first-class citizens of the XQuery domain (scores and nodes), which can —and
need to— be further processed by XQuery means.

On the other hand, this work proves that the Pathfinder compiler can be extended to deal
with implicit score propagation easily. The extensions made line up very well with the overall

1Of course, I do not deny its completeness, but other languages, e.g., brainfuck [22], are complete as well,
although I hope that nobody uses them as general purpose programming languages.
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Pathfinder/MonetDB architecture. More important: All required changes are isolated to
an early compilation phase, given that a Full Text engine is in place. Different compilation
techniques for the Full Text language have been sketched in Section 5.21, which make the Path-
finderFT architecture usable even when the Full Text engine changes, and even when different
interpretations of the Full Text language should be implemented.

Consider a user being expert enough to question the scoring model used. Of course, the imple-
mentation of the scoring model functions (see Section 5.23) should be accessible by that user.
But this may not be enough: In principle, the user may request any interaction of scores and
values thinkable (see Section 2.3.3). A consequence of this is that the complete calculation of
values and scores should be under the user’s control. This is probably achieved best by keeping
PathfinderFT a separate, early compilation phase (see Section 4.3), defined independent of the
Pathfinder compiler itself.

Within the XQuery Full Text ecosystem, PathfinderFT may be a tool to further develop,
and assess scoring models, and Full Text engines. Future work here includes to make Pathfin-
derFT cover more of the XQuery language, adding a type system is probably the most pressing
issue. Also, the support for the Full Text language is very limited currently.

If a clean, elegant, and sober language design is desired, it seems necessary to rethink XML IR
at large, and outside of XQuery Full Text. Due to the shortcomings of XQuery towards
extensibility (see Section 2.4), this discussion should be led without regard to integration with
XQuery.
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